Новости

Экспозиция «Десятилетие науки и технологий» откроется 4 ноября 2023 года на ВДНХ в павильоне № 57 «Россия – моя история»

4 ноября, в День народного единства, на территории ВДНХ откроется Международная выставка-форум «Россия». Министерство науки и высшего образования Российской Федерации представит в павильоне №57 интерактивную экспозицию «Десятилетие науки и технологий». Ее главная цель — рассказать гостям о достижениях и перспективах отечественной науки и вовлечь молодое поколение в сферу исследований и разработок. Информационным партнером проекта выступает АНО
«Национальные приоритеты» — оператор Десятилетия науки и технологий.

В ИЯФ СО РАН разработали собственный мощный прецизионный источник питания для магнитов бустера ЦКП «СКИФ» вместо европейского

Специалисты Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) разработали прецизионный источник питания для дипольных магнитов бустера синхротрона «СКИФ» (Сибирский кольцевой источник фотонов, ЦКП СКИФ). Данный класс оборудования относится к прецизионным системам питания, так как позволяет не только поддерживать требуемый уровень тока в магнитах с необходимой точностью в статике, но и в динамике, что крайне необходимо при подъеме энергии пучка в бустере. Именно от точности и стабильности магнитного поля в дипольных магнитах зависит сама возможность существования электронного пучка в синхротроне. На данный момент протестирован первый серийный образец источника питания. Всего для бустера необходимо три подобных устройства – они будут готовы к концу 2023 г. Изначально планировалось заказывать источники питания у мирового лидера в системах питания ускорителей – датской компании Danfysik.

 

Разработана уникальная технология изготовления фотокатодов из гексаборида лантана с повышенной квантовой эффективностью

В рамках нацпроекта «Наука и университеты» (федеральный проект "Развитие масштабных научных и научно-технологических проектов по приоритетным исследовательским направлениям") в Алтайском государственном техническом университете им. И. И. Ползунова (г. Барнаул) при участии Института ядерной физики им. Г. И. Будкера СО РАН (г. Новосибирск) созданы экспериментальные образцы фотокатодов из гексаборида лантана с модифицированной поверхностью.

Физики изготовили люминофорную керамику за 1 секунду

Специалисты Томского политехнического университета и Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) провели цикл экспериментов на стенде УНУ ЭЛВ-6 по экспресс-изготовлению различного типа керамик. Одним из результатов стало получение люминесцентной керамики промышленного качества. Время изготовления составило секунды, при том что получение таких материалов другими методами занимает десятки часов. При такой производительности одна установка может обеспечить мировые потребности в определённых типах люминофорной керамики.

В Новосибирске синтезировали материал для «начинки» натрий-ионных аккумуляторов

Практически вся портативная электроника и бытовая техника сегодня работает на литий-ионных аккумуляторах. Такие электрохимические элементы быстро заряжаются, обладают высокой энергоемкостью и долго служат. Но литий – это дорогой и редкий металл, а его производство неэкологично. Альтернативный путь – создание натрий-ионных аккумуляторов. Специалисты Института неорганической химии им. А. В. Николаева СО РАН (ИНХ СО РАН) синтезируют функциональные материалы для создания аккумуляторов нового поколения и совместно с коллегами из Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) изучают их свойства с помощью синхротронного излучения (СИ) в Центре коллективного пользования «Сибирский центр синхротронного и терагерцового излучения» (ЦКП СЦСТИ). Сейчас научная группа исследует характеристики гибридного материала из дисульфида молибдена и графена, который перспективен в качестве анодной части натрий-ионных аккумуляторов. Исследования показали, что синтезированный материал обладает хорошей стабильностью и достаточной энергоемкостью, то есть основные параметры качества батареек остаются на высоком уровне. Работа поддержана грантом РНФ № 23-73-00048.

 

Российские учёные готовятся к созданию коллайдера Супер С-тау фабрика

Супер С-тау фабрика — это будущий электрон-позитронный коллайдер, в научную программу которого будет входить изучение частиц, содержащих очарованные кварки и тау-лептоны, и поиск новых физических эффектов, не описываемых Стандартной моделью. Фабриками называют особый класс коллайдеров с высокой светимостью, а светимость – это величина, определяющая число рождений частиц, происходящих в единицу времени. Ожидается, она будет в сто раз больше, чем у существующих в мире установок.

Создан опытный экземпляр несущей конструкции накопительного кольца СКИФ, и теперь рок-концерт не помешает исследователям

Специалисты ФАУ «СибНИА им. С. А. Чаплыгина» совместно с ООО «Авиареставрация» и ООО «Вильде Механикс» выполнили работы по проектированию и изготовлению опытного экземпляра гирдера для модульных секций накопителя ЦКП «СКИФ». Гирдеры – несущие конструкции, на которых будет установлена магнитная система накопительного кольца синхротрона Центра коллективного пользования «Сибирский кольцевой источник фотонов» (ЦКП «СКИФ»). От характеристик гирдеров во многом зависят различные параметры пучка в установке, в том числе его эмиттанс – параметр, который определяет уровень яркости синхротронного излучения (СИ), а значит и качество исследований пользователей ЦКП «СКИФ». Проверка соответствия гирдера техническим требованиям проведена на испытательном стенде, созданном Институтом ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) совместно со специалистами ФАУ «СибНИА им. С. А. Чаплыгина» и Института нефтегазовой геологии и геофизики имени А. А. Трофимука СО РАН (ИНГГ СО РАН).

Эксперимент в Фермилаб в два раза улучшил точность измерения g-2 мюона, продвинувшись в поисках Новой физики в неизведанную область

Физики Национальной ускорительной лаборатории им. Энрико Ферми (Фермилаб, США) 10 августа 2023 года сообщили (ссылка) о новых результатах эксперимента Muon g-2. В этом эксперименте с высокой точностью измеряется аномальный магнитный момент мюона (АМММ). Магнитный момент отражает силу взаимодействия частицы, в данном случае мюона, с магнитным полем. Аномальный магнитный момент возникает в результате взаимодействия частицы с короткоживущими ненаблюдаемыми, или виртуальными, частицами. Измеряя эту величину в эксперименте, и сравнивая ее с предсказанием Стандартной модели, ученые ищут указания на существование Новой физики – явлений (частиц и сил), не описываемых Стандартной моделью. Уникальность АММ мюона состоит в том, что он очень чувствителен к вкладу возможных, не открытых еще частиц. Чем точнее получается измерить АММ мюона и предсказать его значение, тем глубже удается заглянуть в то, как устроен мир на самых малых расстояниях. Чтобы достичь суперточности, ученые проводят все новые и новые эксперименты и расчеты.

Согласно результатам, анонсированным Фермилаб, эксперимент Muon g-2 смог измерить АММ мюона с рекордной точностью 0.2 ppm, или 0.00002% – более чем в два раза точнее предыдущего измерения, проводившегося в Брукхейвенской лаборатории (БНЛ, США) в конце 90-х – начале 2000-х. Полученный результат хорошо согласуется с предыдущими измерениями.

Теперь, когда экспериментальное значение АМММ достигло такой высокой точности, физики должны повысить уровень теоретического предсказания АМММ. Наиболее точное предсказание Стандартной модели для АММ мюона было получено в 2020 году. Между этим предсказанием и новым измеренным значением наблюдается разница более 5 стандартных отклонений. Такой разницы было бы достаточно, чтобы утверждать о наблюдении эффектов, не описываемых Стандартной моделью. Однако, с 2020 года появилось несколько расчетов, основанных на решеточных вычислениях КХД и на новых измерениях вероятности рождения пары пионов в электрон-позитронной аннигиляции, проведенных в Институте ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) на коллайдере ВЭПП-2000 с детектором КМД-3, которые ставят под сомнение расчет 2020 года. В настоящее время широкая коллаборация ученых из многих мировых научных центров работает над уточнением теоретического предсказания.

 

Объединяя частицы, науку России и Китая: открылась школа НЦФМ по физике высоких энергий и ускорительной технике

В России и мире учёные создают масштабные ускорители для проведения экспериментов в поисках новой физики и реализации новых технологий на уникальной научной технике. Сталкивая частицы высокой энергии, специалисты фиксируют неожиданные отголоски тёмной материи, узнают об особенностях устройства очарованных и прелестных кварков и обнаруживают новые загадки Вселенной. Одной из перспективных установок для изучения процессов, происходящих глубже, чем в атомах и ядрах, – в нуклонах, и развития микроэлектроники и наноэлектроники станет источник комптоновского излучения, который учёные создают в Национальном центре физики и математики (НЦФМ).

Высокоскоростное кино: физики засняли, как «пылит» вещество в момент взрыва

Одна из основных задач в изучении быстропротекающих процессов – ударно-волновых и взрывных – в том, чтобы при помощи экспериментальных данных получить информацию о состоянии вещества в момент сжатия до миллиона атмосфер (для примера давление в центре Земли составляет 3,7 млн атмосфер). Численное моделирование поведения материала при таких перегрузках интересно для аэрокосмической, атомно-энергетической, строительной отраслей промышленности. Специалисты Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) совместно с коллегами из Института гидродинамики им. М. А. Лаврентьева (ИГиЛ СО РАН) исследуют одно из паразитных явлений, возникающих в момент взрыва и мешающих равномерному сжатию материала – пыление. Поток микрочастиц, отрывающихся от вещества, специалисты изучают при помощи синхротронной радиографии на станции «Субмикросекундной диагностики» Центра коллективного пользования «Сибирский центр синхротронного и терагерцового излучения» (ЦКП СЦСТИ) ИЯФ СО РАН. Синхротронное излучение позволяет получать картину событий, длящихся наносекунды. Благодаря таким техническим возможностям ученые создали математическую модель пыления – эксперименты проходили с образцами из олова. Результаты были доложены на конференциях Synchrotron and Free electron laser Radiation: generation and application (SFR) (2022 г.) и Забабахинские научные чтения (2023 г.).

Сколько точно «весит» элементарная частица со скрытой прелестью, узнают физики ИЯФ СО РАН

В Институте ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) находятся два из семи действующих сегодня в мире коллайдера – ВЭПП-2000 и ВЭПП-4М. На последнем готовится эксперимент по прецизионному измерению массы ипсилон 1s мезона – элементарной частицы со скрытой прелестью. Для того, чтобы с лучшей в мире точностью провести подобные измерения на энергии 4,7 ГэВ, физики модернизировали ускорительный комплекс ВЭПП-4М – они разработали и интегрировали в него лазерный поляриметр. Прибор позволит специалистам получить самое точное значение массы ипсилон 1s мезона – этот результат в ближайшие десять лет будет эталонным в международном физическом сообществе. Экспериментальные данные, полученные на коллайдере ВЭПП-4М, станут еще одним кирпичиком в уточнении и развитии современной теории микромира.