Новости

Ученые установили, что радиационная обработка улучшает свойства ракетного топлива

Специалисты Института химии твердого тела и механохимии СО РАН (ИХТТМ СО РАН) и Федерального научно-производственного центра (ФНПЦ) «Алтай» провели серию экспериментов на промышленном ускорителе ИЛУ-6 по радиационно-химической модификации полимера, который выполняет функцию связующего агента между различными компонентами в твердотопливных ракетных двигателях. Исследования показали, что радиационная обработка сокращает время вулканизации (склеивания) данного полимера на 30% – такое усовершенствование технологического процесса может не только ускорить производство ракетного топлива, но и сделает его эксплуатацию более безопасной. Результаты опубликованы в журнале «Химия в интересах устойчивого развития».

Специалисты ИЯФ СО РАН поставили в 2019 году шесть промышленных ускорителей в Россию и страны Восточной Азии

В 2019 г. специалисты произвели и поставили шесть установок в Южную Корею, Китай и Россию. В 2020 г. ожидаются поставки четырнадцати ускорителей ЭЛВ в страны Восточной Азии. Еще один ускоритель будет поставлен и запущен в России. Установки новосибирского производства будут использоваться для производства термоусаживаемых изделий, облучения полимерной изоляции проводов и кабелей, а также для производства изделий из вспененного полиэтилена. За все время работы по данному направлению ИЯФ СО РАН произвел более 170 промышленных ускорителей.

РАН учредила золотую медаль имени Г. И. Будкера

Российская академия наук (РАН) учредила золотую медаль имени Герша Ицковича Будкера - основателя и первого директора Института ядерной физики Сибирского отделения РАН. Соответствующее постановление Президиума Академии подписал президент РАН, академик Александр Сергеев.

Чистая комната для сборки диагностических элементов ИТЭР готова к работе

В Институте ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) завершилось создание высокотехнологичного испытательного стенда, предназначенного для сборки, монтажа и тестирования диагностических сборок – порт-плагов для экспериментального термоядерного реактора ИТЭР (ITER, International Thermonuclear Experimental Reactor). Стенд представляет собой «сверхчистое» помещение огромных размеров (30×36×23м), которое позволяет работать с крупногабаритным оборудованием весом до 80 тонн. Прием оборудования начнется в 2020 году. Различные элементы будут доставлены в ИЯФ СО РАН из стран-партнеров ИТЭР, а также от российских организаций – партнеров ИЯФ СО РАН по работам, связанным с изготовлением порт-плагов*.

Коллайдер NICA: начинается монтаж канала транспортировки пучка из Бустера в Нуклотрон

В Объединенном институте ядерных исследований (ОИЯИ) продолжается процесс создания ускорительного комплекса NICA: в конце декабря начался монтаж канала транспортировки пучков тяжелых ионов из Бустерного кольца в Нуклотрон. Канал будет иметь уникальную змеевидную форму и сравнительно небольшую массу – 40 тонн, благодаря компактным размерам его магнитной системы. Оборудование канала совместно разработано специалистами ОИЯИ и Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) и изготовлено в ИЯФ СО РАН. Общая сумма контракта составила 261 миллион рублей.

Физики подтвердили перспективность открытых магнитных систем для управляемого термоядерного синтеза

Главным недостатком открытых магнитных ловушек для удержания плазмы традиционно считается большая величина потерь энергии вдоль магнитного поля. Однако согласно теоретическим расчетам специалистов Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН), величина таких энергетических потерь (энергии, выносимой электрон-ионной парой) может быть уменьшена до величин, приемлемых для систем с параметрами термоядерного класса. В недавних экспериментах на установке ГДЛ (Газодинамическая ловушка) специалисты Института измерили величину продольных потерь энергии из открытой ловушки – результаты совпали с теоретическими предсказаниями. Полученные данные подтверждают возможность развития термоядерных установок следующего поколения на основе открытых магнитных систем. Результаты опубликованы в статье.

Физики впервые наблюдали процесс прямого рождения псевдовекторной частицы в электрон-позитронной аннигиляции

Специалисты Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) впервые наблюдали в эксперименте процесс прямого рождения псевдовекторной частицы f1(1285) на электрон-позитронном коллайдере ВЭПП-2000 с детектором СНД. Подобные процессы в электрон-позитронных столкновениях проходят через двухфотонное промежуточное состояние с виртуальными фотонами и сильно подавлены, поэтому являются редкими и ранее никем не наблюдались. Результаты согласуются с предсказаниями, сделанными теоретиками ИЯФ СО РАН. Результаты опубликованы в журнале Physics Letters B.

Ультрафиолетовый солнечный спектрометр, прокалиброванный в ИЯФ СО РАН, отправлен в космос

Специалисты центра коллективного пользования «Сибирский центр синхротронного и терагерцового излучения (ЦКП «СЦСТИ») Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) совместно с коллегами из Института прикладной геофизики им. академика Е.К. Федорова (ИПГ) провели калибровку оборудования для российского метеорологического спутника «Электро-Л» № 3. Запуск космического аппарата, который будет поставлять информацию об изменениях погодных условий Роскосмосу, Росгидромету и Всемирной метеорологической организации, состоялся 24 декабря 2019 г. с космодрома Байконур.

Мюонные детекторы, разработанные для гамма-обсерватории TAIGA, прошли проверку

Ученые Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) и Новосибирского государственного университета (НГУ) завершили установку мюонных детекторов для проекта гамма-обсерватории TAIGA, головной организацией которого является Иркутский государственный университет (ИГУ). Оборудование, разработанное и изготовленное в Новосибирске, позволит повысить эффективность поиска космических частиц высокой энергии, что является основой научной программы международного проекта. На данный момент специалисты ИЯФ СО РАН и НГУ изготовили и установили 48 мюонных детекторов – все они прошли проверку и готовы к использованию.

Ученые впервые напрямую измерили эффект просветления оптики ВУФ диапазона для астрофизических исследований

Специалисты центра коллективного пользования «Сибирский центр синхротронного и терагерцового излучения (ЦКП «СЦСТИ) Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) совместно с коллегами из Физического института им. П. Н. Лебедева РАН (ФИАН) провели тестирование приемника электромагнитного излучения, который, как ожидается, будет использован при разработке регистрирующих элементов будущих космических обсерваторий. В эксперименте ученым впервые удалось напрямую наблюдать работу просветляющего покрытия для аппаратуры, работающей в диапазоне вакуумного ультрафиолета. Данная технология увеличивает чувствительность матрицы приемника электромагнитного излучения почти в полтора раза.

Эксперимент AWAKE: создана подробная модель поведения электронного пучка в процессе кильватерного ускорения

Группа ученых из коллаборации AWAKE Европейского центра ядерных исследований (ЦЕРН) при участии специалистов Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) создали подробную трехмерную модель поведения пучка электронов во время эксперимента по кильватерному ускорению в плазме. Моделирование показало, что большая часть электронов, инжектируемых в плазменную секцию, теряется при проходе через границу плазмы – в результате значительно падает заряд ускоряемого пучка. По данным специалистов, стоимость одного такого расчета составляет не менее 220 тысяч евро. Результаты опубликованы в журнале Plasma Physics and Controlled Fusion.

Отработка технологий создания элементов для ЦКП «СКИФ» начата

Установка класса мегасайенс Центр коллективного пользования «Сибирский кольцевой источник фотонов» (ЦКП «СКИФ») – источник синхротронного излучения поколения «4+» с энергией 3 ГэВ – предполагает наличие системы инжекции, благодаря которой частицы будут ускоряться до установленной техническим заданием энергии 200 МэВ. Специалисты Института ядерной физики им. Г.И. Будкера СО РАН (ИЯФ СО РАН) разработали стенд одного из элементов инжектора, в котором будет происходить основное ускорение. Ученые определили основные требования к производству ускоряющих структур, чтобы достичь необходимого уровня ускорения. Полученные аналитические данные позволят создать инжектор, обеспечивающий заданные параметры пучка и стабильную работу источника синхротронного излучения ЦКП «СКИФ».