Measurement of the energy dependence of the $e^+e^- \rightarrow B\bar{B}$, $B\bar{B}^*$ and $B^*\bar{B}^*$ exclusive cross sections at Belle

arxiv:2104.08371, submitted to JHEP

Alex Bondar¹, Roman Mizuk^{2,3}

¹BINP, Novosibirsk ²LPI, Moscow ³HSE, Moscow

Particle Physics Seminar, 23 April 2021, BINP

Motivation

 $\sigma_{b\bar{b}}$ is not decomposed into exclusive cross sections.

Unitarized Quark Model: minima are due to nodes of the $\Upsilon(4S, 5S, 6S)$ wave functions – information about Υ states.

 $\Upsilon(4S,5S,6S)$ have anomalous transitions to low bottomonia Bondar et al. MPLA **32**, 1750025 (2017).

Method

 $B^* \rightarrow B\gamma$, γ is not reconstructed.

Method (II)

$\Delta E' = \Delta E + M_{bc} - m_B$

Reconstruct $B \rightarrow hadrons$ (~1100 final states).

Data samples

- scan data: 22 points $1\,{\rm fb}^{-1}$ each from 10.63 to 11.02 ${\rm GeV},$
- $\Upsilon(5S)$: 121 fb⁻¹ taken in 3 points separated by 2 MeV,
- $\Upsilon(4S)$ SVD2 configuration: 571 fb⁻¹ determination of efficiency.

FEI: *B* channels

$B^+ ightarrow$	$B^0 ightarrow$
$ar{D}^0\pi^+$	$D^-\pi^+$
$ar{D}^0\pi^+\pi^+\pi^-$	$D^-\pi^+\pi^+\pi^-$
$ar{D}^{*0}\pi^+$	$D^{*-}\pi^+$
$ar{D}^{*0}\pi^+\pi^+\pi^-$	$D^{*-}\pi^+\pi^+\pi^-$
$\overline{D_{s}^{+}\bar{D}^{0}}$	$D_s^+ D^-$
$\bar{D_{s}^{*+}}\bar{D}^{0}$	$D_{s}^{*+}D^{-}$
$\bar{D_{s}^{+}}\bar{D}^{*0}$	$D_{s}^{+}D^{*-}$
$\bar{D_s^{*+}}\bar{D}^{*0}$	$D_{s}^{*+}D^{*-}$
J/ψ K ⁺	$J/\psi K_S^0$
$J/\psi K^0_S \pi^+$	$J/\psi K^+ \pi^-$
$J/\psiK^+\pi^+\pi^-$	
$D^- \pi^+ \pi^+$	$D^* \overline{K^+ K^- \pi^+}$
$D^{*-}\pi^+\pi^+$	

FEI: *D* channels

$D^0 ightarrow$	$D^+ ightarrow$	$D^+_s ightarrow$
$\overline{K^-\pi^+}$	$K^-\pi^+\pi^+$	$K^+K^-\pi^+$
$K^-\pi^+\pi^0$	$K^-\pi^+\pi^+\pi^0$	$K^+K_S^0$
$K^-\pi^+\pi^+\pi^-$	$K_{\rm S}^{0} \pi^{+}$	$K^+ \check{K^-} \pi^+ \pi^0$
$K^0_S \pi^+\pi^-$	$K_{S}^{0}\pi^{+}\pi^{0}$	$K^{+}K^{0}_{S}\pi^{+}\pi^{-}$
$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}$	$K^{-}K^{0}_{S}\pi^{+}\pi^{+}$
K^+K^-	$K^+K^-\pi^+$	$K^+ K^- \pi^+ \pi^+ \pi^-$
$K^+K^-K^0_S$		$K^+\pi^+\pi^-$
		$\pi^+\pi^+\pi^-$

Selection

Use Full Event Interpretation package from Belle II software.

Training: variables not correlated with $p_B \Rightarrow$ efficiency is const. in $E_{\rm cm}$.

 π^{\pm} , K^{\pm} , μ^{\pm} , e^{\pm} : PID, p, p_t .

 γ : N hits, E_9/E_{25} , E, p_t .

 π^0 : *M*, *p*, decay angle.

 K_S : M, detached vertex variables.

D: SignalProbability (classifier output) of each daughter; *M*; χ^2 of mass-vertex constrained fit; for 3-body decays: masses of all pairs of daughters (ϕ , K^* , ρ).

 D^* , J/ψ : SignalProbability of each daughter; M.

Selection (II)

B: SignalProbability of each daughter; χ^2 of *B* vertex fit; distance between *B* and *D* vertices, significance of this distance, cos angle between *D* momentum and direction from *B* to *D* vertices (if *D* is available); masses of $\rho (\rightarrow \pi \pi)$ and $a_1(\rightarrow 3\pi)$ candidates (if available).

Continuum suppression: R_2 , $\cos \theta_{\rm thrust}$, flag indicating presence of high-momentum lepton.

 $\Delta E'$ is not included – use $\Delta E'$ sidebands to constrain background.

For each *B*-decay channel apply individual requirements on $|\Delta E'|$ and SignalProbability maximizing overall $S/\sqrt{S+B}$.

 M_{bc} distributions at $\Upsilon(5S)$ and $\Upsilon(4S)$

 $\Delta E'$ sidebands describe combinatorial background well; there is a peaking background (soft γ).

 $B^* \to B\gamma$: distribution in helicity angle is $1 + a_h \cos^2 \theta$. For $B\bar{B}^*$ expect $a_h = 1$, for $B^*\bar{B}^*$ a_h is not fixed (A.I. Milstein).

 $e^+e^-
ightarrow Bar{B}$ near $\Upsilon(4S)$

 $e^+e^-
ightarrow B\bar{B}$ near $\Upsilon(4S)$

Need phenomenological model to describe cross section shape. Use high-order Chebyshev polynomial for parameterization. Simultaneous fit to BaBar scan points and Belle M_{bc} distributions.

$\Upsilon(4S)$: simultaneous M_{bc} and cross section fit

Fit describes data well.

 $\Upsilon(4S)$: simultaneous M_{bc} and cross section fit

Nominal $E_{\rm cm}$ is at the maximum of visible cross section – constraint. Fit describes data well.

$\Upsilon(4S)$: fit results

N	$(581.2\pm1.1\pm3.2)\times10^{3}$
$\sigma_{ m E}$	$(5.36\pm 0.11\pm 0.16){\rm MeV}$
$\Delta E_{ m BaBar}$	$(-1.75\pm0.14\pm0.67){\rm MeV}$
n	1.16 ± 0.03
<i>s</i> ₃	$(-0.2\pm0.6)\mathrm{MeV}/c$
ϕ_{3}	1.00 ± 0.02

$$\varepsilon_{\Upsilon(4S)} = \frac{N}{2 N_{B\bar{B}}[\Upsilon(4S)]} = (0.469 \pm 0.008) \times 10^{-3}$$

 $N_{B\bar{B}} = N_{b\bar{b}}$: number of hadronic events (continuum subtracted)

$E_{\rm cm}$ spread at various $E_{\rm cm}$

Spread at $\Upsilon(1S, 2S, 3S)$ is found based on visible cross sections.

$E_{\rm cm}$ spread at various $E_{\rm cm}$

Spread at $\Upsilon(1S, 2S, 3S)$ is found based on visible cross sections. KEKB: microwave instability at $l_{\text{bunch}}^+ > 0.5 mA$ – increase of spread. Energy dependence of corrected spread is consistent with proportionality.

Fit describes data well.

$\Upsilon(5S)$: fit results

$N_{ m total}$	$(23.66\pm 0.22\pm 0.34)\times 10^{3}$
$N_{ m B\bar{B}}/N_{ m total}$	0.1121 ± 0.0030
$\textit{N}_{ m B\bar{B}^{*}}$ / $\textit{N}_{ m total}$	0.3095 ± 0.0045
$N_{{ m B}^{*}{ar { m B}}^{*}}/N_{ m total}$	0.5784 ± 0.0048
a _h	-0.18 ± 0.07

$$\varepsilon_{\Upsilon(5S)} = \frac{N_{\text{total}}}{2 N_{B\bar{B}}[\Upsilon(4S)] R} = (0.492 \pm 0.017) \times 10^{-3}$$

R: ratio of B yields at $\Upsilon(5S)$ and $\Upsilon(4S)$, measured w/ 5 clean channels

 $\varepsilon_{\Upsilon(5S)}/\varepsilon_{\Upsilon(4S)} = 1.049 \pm 0.032$, MC: 1.028 \pm 0.004 – agreement.

Efficiency at scan energies: linear interpolation.

M_{bc} fits in scan data

Examples: lowest energies

Fit works well at all energies

Dressed cross sections

Oscillatory behavior.

Positions of minima roughly coincide with Unitarized Quark Model prediction: Ono,Sanda,Tornqvist PRD**34**,186(1986).

$\sigma_{b\bar{b}}$ vs. $\sigma_{B\bar{B}} + \sigma_{B\bar{B}^*} + \sigma_{B^*\bar{B}^*}$

Dong et al. CPC44, 083001 (2020)

• $\sigma_{b\bar{b}}$ and $\sum \sigma_{B^{(*)}\bar{B}^{(*)}}$ coincide at low $E_{\rm cm}$ – cross check.

• $\Upsilon(5S)$ peak is due to $B_s^{(*)}\bar{B}_s^{(*)}$, $B^{(*)}\bar{B}^{(*)}\pi$ and bottomonium channels

Potential models: $\Upsilon(5S) \rightarrow B^{(*)}\bar{B}^{(*)}$ dominate – inconsistent w/ data?

Fit of cross section shapes

To calculate M_{bc} fit function and $(1 + \delta_{ISR})$ corrections, we need to parameterize the cross section shapes. Use high-order Chebyshev polynomial (orders are 10, 17 and 12).

Use iterative procedure.

Fit of cross section shapes (II)

Simultaneous fit of exclusive cross sections $\sigma_{B\bar{B}}$, $\sigma_{B\bar{B}^*}$, $\sigma_{B^*\bar{B}^*}$ and total $\sigma_{b\bar{b}}$ (only for $E_{\rm cm} < 10.75 \,{\rm GeV}$).

Systematics: parameterization of σ vs. $E_{\rm cm}$

Systematics: polynomial orders: ± 1 , ± 2 . Shape is not well constraint at low energy where scan step is large. Systematics is small.

Systematics

stat. and total uncorrelated syst. errors

Uncorrelated syst.: σ parameterization, toy MC, shape of smooth BG. Correlated: $E_{\rm cm}$ spread, peaking BG, efficiency, luminosity. Systematic uncertainties are small.

Cross section table

No.	$E_{ m cm}$	L	$\sigma(B\bar{B})$	$\sigma(Bar{B}^*)$	$\sigma(B^*\bar{B}^*)$
1	11020.8 ± 1.4	0.982	$31.5 \pm 9.9 \pm 1.2 \pm 1.7$	$158.4 \pm 19.3 \pm 4.2 \pm 7.7$	$77.6 \pm 15.6 \pm 5.4 \pm 3.6$
2	11018.5 ± 2.0	0.859	$27.8 \pm 10.5 \pm 1.0 \pm 1.5$	$82.4 \pm 16.5 \pm 2.3 \pm 4.0$	$71.9 \pm 15.9 \pm 3.1 \pm 3.4$
3	11014.8 ± 1.4	0.771	$34.8 \pm 11.4 \pm 1.2 \pm 1.9$	$119.2 \pm 19.5 \pm 2.4 \pm 5.8$	$85.0 \pm 18.1 \pm 2.7 \pm 3.9$
4	11003.9 ± 1.0	0.976	$9.7 \pm 7.0 \pm 0.3 \pm 0.6$	$45.2 \pm 11.8 \pm 1.3 \pm 2.2$	$78.4 \pm 14.2 \pm 5.1 \pm 3.6$
5	10990.4 ± 1.3	0.985	$10.5\pm 8.1\pm 0.4\pm 0.7$	$47.9 \pm 11.7 \pm 2.0 \pm 2.3$	$43.1 \pm 12.4 \pm 3.5 \pm 2.0$
6	10975.3 ± 1.4	0.999	$8.5 \pm 7.2 \pm 1.2 \pm 0.6$	$44.0 \pm 11.9 \pm 0.8 \pm 2.1$	$81.7 \pm 14.3 \pm 4.5 \pm 3.6$
7	10957.5 ± 1.5	0.969	$-2.8\pm 6.0\pm 0.1\pm 0.3$	$54.5 \pm 12.6 \pm 1.6 \pm 2.5$	$89.2 \pm 15.5 \pm 2.5 \pm 3.8$
8	10928.7 ± 1.6	1.149	$10.5 \pm 6.9 \pm 0.9 \pm 0.6$	$62.7 \pm 12.1 \pm 1.6 \pm 2.7$	$115.6 \pm 16.2 \pm 3.8 \pm 4.7$
9	10907.3 ± 1.1	0.980	$28.8 \pm 9.1 \pm 2.0 \pm 1.4$	$66.8 \pm 13.5 \pm 3.2 \pm 2.8$	$72.1 \pm 14.0 \pm 4.0 \pm 2.8$
10	10898.3 ± 0.7	2.408	$32.2 \pm 6.3 \pm 0.5 \pm 1.4$	$90.2 \pm 9.4 \pm 1.3 \pm 3.7$	$61.1 \pm 8.0 \pm 1.4 \pm 2.3$
11	10888.9 ± 0.8	0.990	$43.8 \pm 10.5 \pm 0.7 \pm 2.0$	$101.2 \pm 15.6 \pm 1.0 \pm 4.1$	$82.7 \pm 14.4 \pm 1.8 \pm 3.1$
12	10882.8 ± 0.7	1.848	$33.9 \pm 7.5 \pm 0.4 \pm 1.5$	$109.6 \pm 11.7 \pm 1.5 \pm 4.4$	$88.9 \pm 10.8 \pm 2.5 \pm 3.3$
13	10877.8 ± 0.8	0.978	$33.7 \pm 10.1 \pm 1.7 \pm 1.5$	$103.1 \pm 16.0 \pm 2.8 \pm 4.1$	$117.3 \pm 16.6 \pm 3.0 \pm 4.3$
14	10867.6 ± 0.2	45.28	$31.3 \pm 1.5 \pm 0.0 \pm 1.3$	$76.5 \pm 2.1 \pm 0.1 \pm 3.2$	$154.1 \pm 2.7 \pm 0.2 \pm 6.2$
15	10865.8 ± 0.3	29.11	$32.7 \pm 1.9 \pm 0.0 \pm 1.4$	$81.3 \pm 2.7 \pm 0.1 \pm 3.4$	$154.9 \pm 3.4 \pm 0.1 \pm 6.2$
16	10864.2 ± 0.3	47.65	$32.2 \pm 1.4 \pm 0.0 \pm 1.4$	$74.2 \pm 2.0 \pm 0.1 \pm 3.1$	$159.9 \pm 2.7 \pm 0.3 \pm 6.3$
17	10857.4 ± 0.9	0.988	$17.8 \pm 8.8 \pm 1.2 \pm 0.8$	$81.5 \pm 15.0 \pm 2.5 \pm 3.2$	$184.1 \pm 20.4 \pm 4.4 \pm 6.5$
18	10848.9 ± 1.0	0.989	$19.6 \pm 8.7 \pm 2.3 \pm 0.9$	$109.3 \pm 15.2 \pm 3.2 \pm 4.1$	$160.8 \pm 19.4 \pm 6.2 \pm 5.6$
19	10829.5 ± 1.2	1.697	$18.6 \pm 7.0 \pm 0.7 \pm 0.8$	$101.8 \pm 11.6 \pm 3.4 \pm 3.7$	$198.4 \pm 16.0 \pm 4.2 \pm 6.6$
20	10771.2 ± 1.0	0.955	$9.7 \pm 7.6 \pm 2.2 \pm 0.5$	$112.2 \pm 16.2 \pm 5.2 \pm 3.6$	$58.2 \pm 12.1 \pm 6.1 \pm 1.7$
21	10731.3 ± 1.5	0.946	$27.0 \pm 10.1 \pm 1.4 \pm 1.0$	$54.7 \pm 11.8 \pm 8.5 \pm 1.6$	$161.3 \pm 18.4 \pm 8.7 \pm 4.2$
22	10681.0 ± 1.4	0.949	$19.2 \pm 9.3 \pm 4.1 \pm 0.7$	$177.3 \pm 18.4 \pm 10.7 \pm 4.5$	$139.0 \pm 18.4 \pm 5.7 \pm 3.1$
23	10632.2 ± 1.5	0.989	$51.0 \pm 11.1 \pm 6.0 \pm 1.4$	$257.6 \pm 22.7 \pm 8.1 \pm 5.6$	_

Table: Dressed cross sections (in pb). The first error is statistical, the second is uncorrelated systematic and the third is correlated systematic.

 $\Upsilon(5S)$: two states?

JHEP **10**, 220 (2019) PRL **117**, 142001 (2016) arXiv:1609.08749

Peaks in $\Upsilon \pi^+ \pi^-$ and $h_b \pi^+ \pi^$ are shifted from peak in $B_s^* \bar{B}_s^*$ by ~ 20 MeV.

Interference? Y_b state?

Need combined analysis of all cross section measurements.

Polar angle distribution: $1 + c \cos^2 \theta$. $B\overline{B}$: c = -1, $B\overline{B}^*$: c = 1, $B^*\overline{B}^*$: $c = -0.20 \pm 0.03$.

 $B^*\overline{B}^*$: three states L = 1, S = 0; L = 1, S = 2; L = 3, S = 2. Polarization? \Rightarrow reconstruct γ from $B^* \rightarrow B\gamma$. Visible cross sections and event fractions at $\Upsilon(5S)$

	$\sigma^{ m vis}$ (pb)	$\sigma^{ m vis}/\sigma_{bar b}$ (%)
$e^+e^- ightarrow Bar{B} X$	255.5 ± 7.9	75.1 ± 4.0
$e^+e^- o Bar{B}$	$\textbf{33.3} \pm \textbf{1.2}$	9.8 ± 0.5
$e^+e^- ightarrow Bar{B}^*$	68.0 ± 3.3	20.0 ± 1.3
$e^+e^- ightarrow B^*ar{B}^*$	124.4 ± 5.3	$\textbf{36.6} \pm \textbf{2.2}$

PDG 2020 + isospin relations: $f_{\text{bottomonium}} = (4.9^{+5.0}_{-0.6})\%$.

Fraction of $B_s^{(*)}\bar{B}_s^{(*)}$ events $f_s = 1 - f_{B\bar{B}X} - f_{bottomonium} = (20.0^{+4.0}_{-6.4})\%$. Consistent with PDG 2020: $f_s = (20.1 \pm 3.1)\%$.

Conclusions

First measurement of exclusive cross sections:

$$e^+e^-
ightarrow B\bar{B},$$

 $e^+e^-
ightarrow B\bar{B}^*,$
 $e^+e^-
ightarrow B^*\bar{B}^*$

in the energy range $10.63-11.02\,{\rm GeV}.$

- oscillatory behaviour
- no obvious signals of $\Upsilon(5S)$

Of interest to perform combined analysis of available cross sections: $B\bar{B}$, $B\bar{B}^*$, $B^*\bar{B}^*$, $B_s^*\bar{B}_s^*$, $\Upsilon(1S, 2S, 3S)\pi^+\pi^-$ and $h_b(1P, 2P)\pi^+\pi^-$.

Separation between scan points at low energy is $50\,{\rm MeV}$ – too big, we miss structures. Belle-II can improve on this.