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1 Introduction

One of the remarkable properties of non-Abelian gauge theories (NAGTs) is
the Reggeization of elementary particles in perturbation theory. In contrast
to Quantum Electrodynamics (QED), where the electron does Reggeize [1],
but the photon remains elementary [2], the criteria of Reggeization formu-
lated in [2] are fulfilled in NAGTs for all particles [3, 4]. In Ref. [5], by direct
two-loop calculations in the leading logarithmic approximation (LLA), when
in each order of perturbation theory only terms with the highest powers of
ln s (s is the square of the c.m.s. energy) are retained, it was shown that the
gauge bosons of NAGTs do Reggeize and give the main contribution to the
scattering amplitudes with the quantum numbers of the gauge bosons and
negative signature (symmetry with respect to the replacement s ↔ u ≃ s )
in the t-channel. Then, based on the three-loop calculations, it was assumed
that the Regge form of such amplitudes is valid in the LLA in all orders
of perturbation theory, and self-consistency of this assumption was checked
[6, 7]. A little bit later, the same was done for the amplitudes with the quark
quantum numbers and positive signature in the t-channel [8, 9]. Therefore,
in Quantum Chromodynamics (QCD), which is a particular case of NAGTs,
all elementary particles, i.e. quarks and gluons, do Reggeize.

Reggeization of elementary particles is very important for the theoreti-
cal description of high energy processes. The gluon Reggeization is especially
important because it determines the high energy behaviour of non-decreasing
with energy cross sections in perturbative QCD. In particular, it appears to
be the basis of the famous BFKL (Balitskii-Fadin-Kuraev-Lipatov) equation,
which was first derived in non-Abelian theories with spontaneously broken
symmetry [6, 7, 10] and whose applicability in QCD was then shown [11].
In the BFKL approach the primary Reggeon is the Reggeized gluon. The
Pomeron, which determines the high energy behaviour of cross sections, ap-
pears as a compound state of two Reggeized gluons, and the Odderon, re-
sponsible for the difference of particle and antiparticle cross sections, as a
compound state of three Reggeized gluons.

The Reggeization allows to express an infinite number of amplitudes
through several Reggeon vertices and the Reggeized gluon trajectory. It
means definite form not only of elastic amplitudes, but of inelastic ampli-
tudes in the multi-Regge kinematics (MRK) as well. This kinematics is very
important because it gives dominant contributions to cross sections and to
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discontinuities of amplitudes with fixed momentum transfer in the unitarity
relations. In this kinematics all particles have fixed (not growing with s)
transverse momenta and are combined into jets with limited invariant mass
of each jet and large (growing with s) invariant masses of any pair of the
jets. In the LLA each jet contains only one gluon; in the next-to-leading
logarithmic approximation (NLLA), where the eldest of non-leading terms
are also retained, one has to account production of QQ̄ and GG jets.

It is extremely important that in these approximations elastic amplitudes
and real parts of inelastic amplitudes in the MRK with negative signature
in cross-channels are determined by the Regge pole contributions and have
a simple factorized form (we will call it pole Regge form). Due to this, the
Reggeization provides a simple derivation of the BFKL equation in the LLA
and in the NLLA.

Validity of the Regge form is proved now in all orders of perturbation
theory in the coupling constant g both in the LLA [12], and in the NLLA
(see [13, 14] and references therein).

The pole Regge form is violated in the NNLLA. The first observation
of the violation was done [15] at consideration of the high-energy limit of
the two-loop amplitudes for gg, gq and qq scattering. The discrepancy ap-
pears in non-logarithmic terms. If the pole Regge form would be correct
in the NNLLA, they should satisfy a definite condition (the factorization
condition), because three amplitudes should be expressed in terms of two
Reggeon-Particle-Particle vertices.

Detailed consideration of the terms responsible for breaking of the pole
Regge form in the two-loop and three-loop amplitudes of elastic scattering in
QCD was performed in [16, 17, 18]. In particular, the non-logarithmic terms
violating the pole Regge form at two-loops were recovered and not satisfying
the factorization condition single-logarithmic terms at three loops were found
using the techniques of infrared factorization.

It is necessary to say that, in general, breaking the pole Regge form is
not a surprise. It is well known that Regge poles in the complex angular
momenta plane generate Regge cuts. Moreover, in amplitudes with positive
signature the Regge cuts appear already in the LLA. In particular, the BFKL
Pomeron is the two-Reggeon cut in the complex angular momenta plane.
But in amplitudes with negative signature Regge cuts appear only in the
NNLLA. It is natural to expect that the observed violation of the pole Regge
factorization can be explained by their contributions. As it is shown in [19,
20], this is actually so.

Here the results on which the report [19] at the workshop "Diffraction
2016" was based are presented. Since for violation of the Regge pole factor-
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ization only amplitudes with the gluon quantum numbers in the t-channel
and negative signature are important, only such amplitudes are considered
below. The three-Reggeon cuts in other channels with negative signature are
discussed in [20, 21]

2 Lowest order contribution

Let us consider parton (quark and gluon) elastic scattering amplitudes with
the negative signature in the two-loop approximation, and try to find the
contribution of the Regge cut in them. Due to the signature conservation
the cut with the negative signature has to be a three-Reggeon one. Since our
Reggeon is the Reggeized gluon, the cut starts with the diagrams with three
t-channels gluons. They are presented below.

Here A,A′ and B,B′ can be quarks or gluons. The colour structures of
the diagrams in Fig. 1 can be decomposed into irreducible representations of
the colour group in the t-channel. Since we confine ourselves to amplitudes
with the gluon quantum numbers in the t-channel, we need to consider only

A A′

B B′

a

A A′

B B′

b

A A′

B B′

c

A A′

B B′

d

A A′

B B′

e

A A′

B B′

f

Fig. 1. Three-gluon exchange diagrams
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the adjoint representations. Moreover, since we are interested in negative
signature, for gluon scattering we need to consider only the antisymmetric
adjoint representation. In other words, in the colour decomposition we need
only the same structure as in the one-gluon exchange,

CA′B′

AB = 〈A′|T a|A〉〈B′|T a|B〉 , (1)

where T a are the colour group generators in the corresponding representa-
tions, [T a, T b] = ifabcT

c; T a
bc = T a

bc = −ifabc for gluons and T a
bc = −tabc for

quarks.
Matrix elements corresponding to the diagrams in Fig. 1 contain

this colour structure with the coefficients Cα
ij , where α = a, b, c, d, e, f

and ij = gg, gq and qq for gluon-gluon, gluon-quark and quark-
quark scattering correspondingly. They are given by the convolutions
Tr(T aT bT cT d)Tr(T a1T b1T c1T d), where a1b1c1 are obtained from abc by
all possible permutations.

Using the equalities

Tr(tatb) =
1

2
δab , tatb =

1

2Nc

δabI +
1

2
(dabc + ifabc)tc , (2)

one easily finds

Tr(tatbtctd) =
1

Nc

δadδbc +
1

8
(dadidbci + fadif bci+ idadif bci− ifadidbci) . (3)

As it follows from (2), the tensor Tr(T aT bT cT d) can be written as

Tr(T aT bT cT d) = 4Tr([ta, ti][tj , tb])Tr([tc, tj][ti, td]) . (4)

Using this representation, the completeness condition for the matrices ta and
the identity matrix I in the form

Tr(tiA)Tr(tiB) = −
1

2Nc

Tr(A)Tr(B) +
1

2
Tr(AB) , (5)

and therelations (which are easily obtained from the completeness condition)

tata = CF I, tatbta =

(

CF −
CA

2

)

tb, tatbtcta =
1

4
δbcI+

(

CF −
CA

2

)

tbtc ,

(6)
where CF and CA are the values of the Casimir operators in the fundamental
and adjoint representations,

CF =
N2

c − 1

2Nc

, CA = Nc , (7)
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we obtain

Tr(T aT bT cT d) = δadδbc+
1

2
(δabδcd+ δacδbd)+

Nc

4
(fadif bci+ dadidbci) . (8)

The convolutions can be performed with the help of the relations

Tr
(

T aDb
)

= 0 , Tr
(

T aT b
)

= Ncδ
ab, Tr

(

DaDb
)

=
N2

c − 4

Nc

δab , (9)

Tr
(

T aT bT c
)

= i
Nc

2
fabc, Tr

(

T aT bDc
)

=
Nc

2
dabc , (10)

Tr
(

DaDbT c
)

= i
N2

c − 4

2Nc

fabc, Tr
(

DaDbDc
)

=
N2

c − 12

2Nc

dabc, (11)

where Da
bc = dabc. They can be derived analogously to (4). As the result,

one obtains

Ca
gg =

3

2
+

N2
c

8
, Ca

gq =
1

4
+

N2
c

8
, Ca

qq =
1

4

(

1 +
3

N2
c

)

, (12)

Cb
gg = Cc

gg = Cd
gg = Ce

gg = Cgg =
3

2
, Cb

gq = Cc
gq = Cd

gq = Ce
gq = Cgq =

1

4
,

(13)

Cb
qq = Cc

qq = Cd
qq = Ce

qq = Cqq =
1

4

(

−1 +
3

N2
c

)

, (14)

Cf
gg =

3

2
+

N2
c

8
, Cf

gq =
1

4
+

N2
c

8
, Cf

qq =
1

4

(

N2
c − 3 +

3

N2
c

)

, (15)

The contribution AFig.1 of the diagrams in Fig.1 to the scattering amplitudes
with the colour structures (1) can be written as

AFig.1
ij = 〈A′|T a|A〉〈B′|T a|B〉×

×

[

CijA
eik +

N2
c

8

(

Aa
ij +Af

ij

)

+ δi,qδj,q
4−N2

c

8

(

Aa
ij −Af

ij

)

]

, (16)

where Aα
ij is the contribution of the diagram α with omitted colour factors

and Aeik
ij =

∑

α Aα
ij . Note that Aeik is gauge invariant. It can be easily

found:

Aeik = g2
s

t

(

−4π2

3

)

g4 ~q 2 A
(3)
⊥

, (17)
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q

q

Fig. 2: Diagrammatic representation of A
(3)
⊥

in the transverse momentum
space

where A
(3)
⊥

is presented by the diagram Fig. 2 in the transverse momentum
space, and is given by the integral

A
(3)
⊥

=

∫

d2+2ǫl1d
2+2ǫl2

(2π)2(3+2ǫ)~l 21
~l 22 (~q −

~l1 −~l2)2
=

= 3C2
Γ

4

ǫ2
(~q 2)2ǫ

~q 2

Γ2(1 + 2ǫ)Γ(1− 2ǫ)

Γ(1 + ǫ)Γ2(1 − ǫ)Γ(1 + 3ǫ)
, (18)

where

CΓ =
Γ(1 − ǫ)Γ2(1 + ǫ)

(4π)2+ǫΓ(1 + 2ǫ)
=

=
Γ(1 − ǫ)Γ2(1 + ǫ)

(4π)2+ǫ
(1− ǫ2ζ(2) + 2ǫ3ζ(3)−

9

4
ǫ4ζ(4) + .....) , (19)

Γ2(1 + 2ǫ)Γ(1− 2ǫ)

Γ(1 + ǫ)Γ2(1− ǫ)Γ(1 + 3ǫ)
= 1 + 6ǫ3ζ(3)− 9ǫ4ζ(4) + .....) . (20)

Note that we use the "infrared" ǫ, ǫ = (D− 4)/2, D is the space-time dimen-
sion.

The last term in (16) is not relevant; it is the contribution of the positive
signature in the quark-quark scattering. The second term does not violate the
pole factorization and can be assigned to the Reggeized gluon contribution.
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This is not true for the first term, because

2Cgq 6= Cqq + Cgg , 2Cgq − Cqq − Cgg = −
1

4

(

1 +
1

N2
c

)

, (21)

which means violation of the pole factorization. It is not difficult to see that
the nonvanishing in the limit ǫ → 0 part of the amplitudes CijA

eik coin-
cides with g2(s/t)(αs/π)

2Rij
(2),0,[8] of the paper [18]. The values Rij

(2),0,[8]

are given there in Eq. (4.35), (αs/π)
2Rij

(2),0,[8] is the first (two-loop, non-

logarithmic) contributions to the "non-factorizing remainder function" R
[8]
ij

introduced in Eq. (3.1) of [18]. This means that the violation of the pole
factorization discovered in [15] and analysed in [16]-[18] is due to the eikonal
part of the contribution of the diagrams with three-gluon exchange.

However, one can not affirm that this part is given entire by the three-
Reggeon cut. Indeed, it can contain also the Reggeized gluon contribution.
In fact, a non-factorizing remainder function is not uniquely defined. The
definition used in [18] was chosen for convenience of comparison of the high
energy and infrared factorizations.

3 Radiative corrections

The problem of separation of the pole and cut contributions can be solved
by consideration of logarithmic radiative corrections to them. In the case of
the Reggeized gluon contribution the correction comes solely from the Regge
factor, so that the first order correction (more strictly, its relative value; this
is assumed also in the following) is ω(t) ln s, where ω(t) is the gluon trajectory,

ω(t) = −g2Nc~q
2

∫

d2+2ǫl

2(2π)(3+2ǫ)~l 2(~q −~l)2
= −g2NcCΓ

2

ǫ
(~q 2)ǫ . (22)

In the case of the three-Reggeon cut, one has to take into account the
Reggeization of each of three gluons and the interaction between them. The

Reggeization gives ln s with the coefficient 3CR, where A
(3)
⊥

CR is represented
by the diagram in Fig. 3 in the transverse momentum space,

and is given by the integral

A
(3)
⊥

CR = −g2NcCΓ
2

ǫ

∫

d2+2ǫl1 d
2+2ǫl2

(2π)2(3+2ǫ)~l 21
~l 22 (~q −

~l1 −~l2)1−ǫ
=

= −g2NcCΓ
4

3ǫ
(~q 2)ǫ

Γ(1− 3ǫ)Γ(1 + 2ǫ)Γ(1 + 3ǫ)

Γ(1− ǫ)Γ(1 − 2ǫ)Γ(1 + ǫ)Γ(1 + 4ǫ)
A

(3)
⊥

. (23)
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q

q

Fig. 3. Diagrammatic representation of A
(3)
⊥

CR

Interaction between two Reggeons with transverse momenta ~l1 and ~l2 and
colour indices c1 and c1 is defined by the real part of the BFKL kernel

[

Kr(~q1, ~q2;~k)
]c′

1
c′
2

c1c2
= T a

c1c
′

1

T a
c2c

′

2

g2

(2π)D−1

[

~q 2
1 ~q

′ 2
2 + ~q 2

2 ~q
′ 2
1

~k 2
− ~q 2

]

, (24)

where ~k is the momentum transferred from one Reggeon to another in the
interaction, ~q ′

1 and ~q ′
2 (c′1 and c′2) are the Reggeon momenta (colour indices)

after the interaction, ~q ′
1 = ~q1 − ~k, ~q ′

2 = ~q2 + ~k, and ~q = ~q1 + ~q2 = ~q ′
1 + ~q ′

2 .
For the colour structure which we are interested in, account of the interac-

tions between all pairs of Reggeons leads in the sum to the colour coefficients
which differ from the coefficients Cα

ij (15) only by the common factor Nc.
It can be easily obtained using invariance of Tr(T a1T a2T a3T a4) under the
colour group transformation

T ai → eiθ
c
T

c

T aie−iθc
T

c

, (25)

which takes the form

T ai → T ai − iθcT̂ c(i)T ai , T̂ c(i)T ai = T c
aia

′

i

T a′

i (26)

at small θc. It means that we can put

R̂c =
∑

i

T̂ c(i) = 0 , (27)
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if R̂c acts on Tr(T a1T a2T a3T a4). Using (27) and R̂cR̂c = 0 one has

4
∑

i>j=2

T̂ c(i)T̂ c(j) =
1

2

(

4
∑

i=2

T̂ c(i)T̂ c(i)− T̂ c(1)T̂ c(1)

)

. (28)

Here on the left side we have the sum of the colours factors of the BFKL
kernel (24) for interactions between all pairs of Reggeons, and the right side
is equal Nc.

Now about the kinematic part of the kernel (24). The first two terms
in the square brackets in (24) correspond to the same diagrams as in (3),
and their total contribution to the coefficient of ln s in the first order cor-
rection is −4CR. The last term corresponds to the diagram in Fig. 4 and

q

q

Fig. 4. Diagrammatic representation of A
(3)
⊥

C3

its contribution to the coefficient of ln s in the first order correction is −C3,
where

C3 = g2NcCΓ
4

ǫ

∫

d2+2ǫl1 d
2+2ǫl2(l1 + l2)

2ǫ

(2π)2(3+2ǫ)~l 21
~l 22 (~q −

~l1 −~l2)1−2ǫ

(

A
(3)
⊥

)−1

=

= g2NcCΓ
32

9ǫ
(~q 2)ǫ

Γ(1− 3ǫ)Γ(1− ǫ)Γ2(1 + 3ǫ)

Γ2(1− 2ǫ)Γ(1 + 2ǫ)Γ(1 + 4ǫ)
. (29)

Therefore, the first order correction in the case of Reggeized gluon is ω(t) ln s,
where ω(t) is given by (22), and in the case of the three-Reggeon cut is
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(−CR − C3) ln s, where CR and C3 are given by (23) and (29) respectively.
If to present the coefficients Cij in (15) as the sum

Cij = CR
ij + CC

ij , (30)

where CR
ij correspond to the pole, so that

2CR
gq = CR

qq + CR
gg , (31)

and CC
ij correspond to the cut, we obtain that with the logarithmic accuracy

the total three-loop contribution to the coefficient of ln s is

Aeik
(

CR
ijω(t)− CC

ij (CR + C3)
)

ln s . (32)

The infrared divergent part of these contributions must be compared with

the functions g2(s/t)R
(3),1,[8]
ij ln s of the paper [18]. The values Rij

(3),1,[8]

are given there in Eq. (4.59), Rij
(3),1,[8] ln s are the three-loop logarithmic

contributions to the non-factorizing remainder function R
[8]
ij . It is not difficult

to see that with the accuracy with which the values Rij
(2),1,[8] are known the

equality

g2(s/t)R
(3),1,[8]
ij = Aeik

(

CR
ijω(t)− CC

ij (CR + C3)
)

(33)

can be fulfilled if

CC
gg = −

3

2
, CC

gq = −
3

2
, CC

qq =
3(1−N2

c )

4N2
c

, (34)

and

CR
gg = 3 , CR

gq =
7

4
, CR

qq =
1

2
. (35)

It means that the restrictions imposed by the infrared factorization on the
parton scattering amplitudes with the adjoint representation of the colour
group in the t-channel and negative signature can be fulfilled in the NNLLA
at two and three loops if besides the Regge pole contribution there is the
Regge cut contribution

AeikCC
ij (1− (CR + C3) ln s) . (36)

Here the coefficients CC
ij , CR and C3 are given by Eqs. (34), (23) and (29)

respectively.
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4 On the derivation of the BFKL equation in

the NNLLA

The BFKL equation was derived [6, 7] for summation of radiative corrections
in the LLA to amplitudes of elastic scattering processes. These amplitudes
were calculated using the s-channel unitarity and analyticity. The unitarity
was used for calculation of discontinuities of elastic amplitudes, and analytic-
ity for their full restoration. Use of the s-channel unitarity requires knowledge
of multiple production amplitudes in the MRK. The assumption was made
that all amplitudes in the unitarity relations for elastic amplitudes, both
elastic and inelastic, are determined by the Regge pole contributions. With
this assumption, the s-channel discontinuities of the elastic amplitudes can
be presented as the convolution in the transverse momentum space of energy
independent impact factors of colliding particles, describing their interaction
with Reggeons, and the Green’s function G for two interacting Reggeons,
which is universal (process independent). The BFKL equation looks as

d G

d ln s
= K̂ G , (37)

where K̂ is the kernel of the BFKL equation. It consists of virtual and
real parts; the first of them is expressed through the Regge trajectories and
the second through effective vertices for s-channel production of particles in
Reggeon interaction.

The assumption that all amplitudes in the unitarity relations are deter-
mined by the Regge pole contributions is very strong, and it should have been
proven. The first check of this assumption was made already in [7]. Here it
should be recalled that the BFKL equation is written for all t-channel colour
states, which a system of two Reggeons can have, in particular, for the colour
octet. Therefore, there is the bootstrap requirement: solution of the BFKL
equation for the colour octet in the t-channel and negative signature must
reproduce the pole Regge form, which was assumed in its derivation. It was
shown in [7] that this requirement is satisfied. Of course, it was not a proof of
the assumption, but only verification in a very particular case. Later it was
realized that it is possible to formulate the bootstrap conditions for ampli-
tudes of multiple production in the MRK and to give a complete proof of the
hypothesis on their basis [12]. A similar (although much more complicated)
proof for elastic amplitudes and for real parts of inelastic ones was carried
out in the NLLA (see [13, 14] and references therein).

It turns out that all amplitudes in the unitarity relations are determined
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by the Regge pole contributions also in the NNLLA. The reason is that in this
approximation one of two amplitudes in the unitarity relations can lose ln s,
while the second one must be taken in the LLA. The LLA amplitudes are real,
so that only real parts of the NLLA amplitudes are important in the unitarity
relations. Since they have a simple pole Regge form, the scheme of deviation
of the BFKL equation in the NLLA remains unchanged. The only difference
is that we have to know the Reggeon trajectory and Reggeon-Reggeon-gluon
production vertex with higher accuracy and to know also effective Reggeon-
Reggeon→ gluon-gluon and Reggeon-Reggeon→ quark-antiquark vertices.

Unfortunately, this scheme is violated in the NNLLA. In this approxima-
tion two powers of ln s can be lost compared with the LLA in the product
of two amplitudes in the unitarity relations. It can be done losing either one
ln s in each of the amplitudes or ln2 s in one of them. In the first case, discon-
tinuities receive contributions from products of real parts of amplitudes with
negative signature in the NLLA, products of imaginary parts of amplitudes
with negative signature in the LLA, and products of amplitudes with positive
signature in the LLA. Of course, account of these contributions greatly com-
plicates derivation of the BFKL equation. In particular, since for amplitudes
with positive signature there are different colour group representations in
the t-channel for quark-quark, quark-gluon and gluon-gluon scattering, their
account violates unity of consideration.

However, these complications do not seem to be as great as in the second
case, when ln2 s is lost in one of the amplitudes in the unitarity relations. In
this case one of the amplitudes must be taken in the NNLLA and the other
in the LLA. Since the amplitudes in the LLA are real, only real parts of the
NNLLA amplitudes are important. But even for these parts the pole Regge
form becomes inapplicable because of the contributions of three-Reggeon cuts
which appear in this approximation. Note that account of these contributions
also violates unity of consideration of quark-quark, quark-gluon and gluon-
gluon scattering because the cuts give contributions to amplitudes with dif-
ferent representations of the colour group in the t-channel for these processes.
But even worse is that we actually do not know the contributions of the cuts.

We showed that the non-factorizing terms in the parton elastic scattering
amplitudes with the colour octet in the t-channel and negative signature
calculated using the infrared factorization [18] in two and three loops (non-
logarithmic terms nonvanishing at ǫ → 0 in two loops and one-logarithmic
terms singular at ǫ → 0 in three loops) can be explained by the contribution
of the three-Reggeon cut. But these terms may have other explanations. In
particular, in [20] for their explanation, along with the three-Reggeon cut,
mixing of the pole and the cut is used. In this paper, the coupling of the cut
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with partons and the Reggeon-cut mixing are derived from effective theory
of Wilson lines.

If we compare our current understanding of the cuts with the history
of investigation of the gluon Reggeization, it seems that we are even in the
worse position than after [5], because the Regge form of elastic amplitudes
was confirmed there by direct calculation in two loops with power accu-
racy. Remind that to prove this form in all orders of perturbation theory it
was firstly generalized for multiple production amplitudes in the multi-Regge
kinematics, then the bootstrap conditions for elastic and inelastic amplitudes
were derived, after which it was proved that their fulfilment is sufficient for
justification of the form, and finally it was shown that they are fulfilled.

5 Conclusions

The gluon Reggeization is one of the remarkable properties of QCD. The
Reggeization means existence of the Regge pole with the gluon quantum
numbers and negative signature with the trajectory j(t) = 1 + ω(t) with
ω(0) = 1. It is important that this pole gives the main contribution to QCD
amplitudes with octet representation of the colour group in cross channels
and negative signature. Thereby these amplitudes have a simple factorized
form (pole Regge form) in the leading and next-to-leading logarithmic ap-
proximations (LLA and NLLA). This is true not only for elastic amplitudes,
but also for real parts of multiparticle production amplitudes in the multi-
Regge-kinematics.

Regge cuts, generated by the Regge poles, appear in the amplitudes with
the colour octet and negative signature in the next-to-next-to-leading loga-
rithmic approximation (NNLLA). Strictly speaking, one can not assert that
these amplitudes are completely given by contributions of the pole and the
cut. A direct proof of such assertion could be coincidence of these contribu-
tions with results of calculation of the amplitudes in the perturbation theory.
Here we showed that for elastic scattering amplitudes the coincidence exists
for the non-logarithmic terms nonvanishing at ǫ → 0 in two loops and the
one-logarithmic terms singular at ǫ → 0 in three loops.

Contributions of the Regge cuts greatly complicates derivation of the
BFKL equation in the NNLLA. There are another complication: the need to
consider in the unitarity relations products of real parts of amplitudes with
negative signature in the NLLA, products of imaginary parts of amplitudes
with negative signature in the LLA, and products of amplitudes with positive
signature in the LLA. But they do not seem as significant as the need to take
into account Regge cuts.
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