## Проявление электрического дипольного момента в распадах $\tau$ лептонов, рождённых в $e^+e^-$ аннигиляции

И. В. Образцов<sup>1, 2, \*</sup> А. И. Мильштейн<sup>1, 2, \*\*</sup>

<sup>1</sup>Институт ядерной физики им. Г. И. Будкера СО РАН, 630090 Новосибирск, Россия <sup>2</sup>Новосибирский государственный университет, 630090 Новосибирск, Россия

Рассмотрены СР-нечетные асимметрии в процессах  $e^+e^- \to \tau^+\pi^-\nu_\tau$ ,  $e^+e^- \to \pi^+\tau^-\bar{\nu}_\tau$ ,  $e^+e^- \to \tau^+\rho^-\nu_\tau$ ,  $e^+e^- \to \rho^+\tau^-\bar{\nu}_\tau$ ,  $e^+e^- \to \tau^+e^-\nu_\tau\bar{\nu}_e$  и  $e^+e^- \to e^+\tau^-\bar{\nu}_\tau\nu_e$ с продольно поляризованным электронным (позитронным) пучком. Асимметрии линейны по электрическому дипольному формфактору  $F_3^{\tau} \equiv b$  в вершине  $\gamma \tau^+\tau^-$ . Показано, что для измерения Im b в указанных процессах поляризация не нужна, однако для измерения Re b поляризация необходима. Также рассмотрены процессы  $e^+e^- \to \pi^+\pi^-\nu_\tau\bar{\nu}_\tau$ ,  $e^+e^- \to e^+e^-\nu_\tau\bar{\nu}_\tau\nu_e\bar{\nu}_e$ ,  $e^+e^- \to \mu^+\mu^-\nu_\tau\bar{\nu}_\tau\nu_\mu\bar{\nu}_\mu$ ,  $e^+e^- \to \mu^+e^-\nu_\tau\bar{\nu}_\tau\nu_\mu\bar{\nu}_e$  и  $e^+e^- \to e^+\mu^-\nu_\tau\bar{\nu}_\tau\nu_e\bar{\nu}_\mu$  с неполяризованными электронным и позитронным пучками. В этих процессах возможно измерить Im b и Re b.

Введение. Одним из способов поиска Новой Физики (НФ) является прецизионное измерение электрического дипольного момента  $\tau$  лептона  $d_{\tau}$ . Значение  $d_{\tau}$ , которое предсказывается Стандартной Моделью (СМ), слишком мало для экспериментального наблюдения. Поэтому регистрация  $d_{\tau}$  в эксперименте подтвердит существование НФ.

Проявление  $d_{\tau}$  можно изучать в процессах образования  $\tau^+\tau^-$  пар в  $e^+e^-$  аннигиляции. В общем виде вершина  $\gamma \tau^+ \tau^-$  может быть записана следующим образом [1, 2]

$$\Gamma^{\mu} = -ie\left\{F_{1}^{\tau}(k^{2})\gamma^{\mu} + \frac{\sigma^{\mu\nu}k_{\nu}}{2M}\left[iF_{2}^{\tau}(k^{2}) + F_{3}^{\tau}(k^{2})\gamma_{5}\right] + \left(\gamma^{\mu} - \frac{2k^{\mu}M}{k^{2}}\right)\gamma_{5}F_{4}^{\tau}(k^{2})\right\},$$

где M – масса  $\tau$  лептона, e < 0 – заряд электрона, k – 4-импульс фотона,  $F_1^{\tau}(k^2)$  – формфактор Дирака,  $F_2^{\tau}(k^2)$  – формфактор Паули,  $F_3^{\tau}(k^2)$  – электрический дипольный формфактор,  $F_4^{\tau}(k^2)$  – анапольный формфактор. В пределе  $k^2 \to 0$  эти формфакторы

<sup>\*</sup> e-mail: ivanqwicliv2@gmail.com

<sup>\*\*</sup> e-mail: A.I.Milstein@inp.nsk.su

принимают следующие значения

$$F_1^{\tau}(0) = 1$$
,  $F_2^{\tau}(0) = a_{\tau} = \mu_{\tau}' \frac{2M}{e}$ ,  $F_3^{\tau}(0) = d_{\tau} \frac{2M}{e}$ ,  $F_4^{\tau}(0) = 0$ .

Формфактор  $F_3^{\tau}(k^2)$  является следствием нарушения Р и Т четностей, а нарушение Р и С четностей проявляется в наличии  $F_4^{\tau}(k^2)$ . В силу СРТ теоремы, нарушение Т эквивалентно нарушению СР. Таким образом,  $d_{\tau}$  проявляется в нарушении СР-четности.

Оценка  $d_l$  в рамках СМ [3–6] дает  $|F_3^e(0)| < |F_3^{\mu}(0)| < |F_3^{\tau}(0)| \approx 10^{-23} \ll 1$ . Измерить  $F_3^{\tau}(0)$  с точностью  $10^{-23}$  на сегодняшний день нельзя. Извлечение из экспериментальных данных ненулевого значения  $F_3^{\tau}(0)$  будет свидетельствовать о существовании НФ. В [7–17] были установлены верхние пределы на  $|F_3^{\tau}(k^2)|$ , а в [18–20] были установлены верхние пределы на  $|F_3^{\tau}(k^2)|$ , а в [18–20] были установлены верхние пределы на  $|F_3^{\tau}(k^2)|$ . В этих экспериментах  $e^-$  и  $e^+$  пучки были неполяризованы. Возникает вопрос: в какой степени наличие поляризации у пучков упрощает проведение эксперимента по измерению  $d_{\tau}$ ?

В докладе будут использованы результаты, полученные в статье [21]. Рассмотрены процессы  $e^+e^- \rightarrow \tau^+\pi^-\nu_{\tau}$ ,  $e^+e^- \rightarrow \pi^+\tau^-\bar{\nu}_{\tau}$ ,  $e^+e^- \rightarrow \tau^+\rho^-\nu_{\tau}$ ,  $e^+e^- \rightarrow \rho^+\tau^-\bar{\nu}_{\tau}$ ,  $e^+e^- \rightarrow \tau^+e^-\nu_{\tau}\bar{\nu}_e$  и  $e^+e^- \rightarrow \tau^-e^+\nu_e\bar{\nu}_{\tau}$  с продольно поляризованным  $e^-$  пучком. Также обсуждаются процессы  $e^+e^- \rightarrow \pi^+\pi^-\nu_{\tau}\bar{\nu}_{\tau}$ ,  $e^+e^- \rightarrow e^+e^-\nu_{\tau}\bar{\nu}_{\tau}\nu_e\bar{\nu}_e$ ,  $e^+e^- \rightarrow \mu^+\mu^-\nu_{\tau}\bar{\nu}_{\tau}\nu_{\mu}\bar{\nu}_{\mu}$ ,  $e^+e^- \rightarrow \mu^+e^-\nu_{\tau}\bar{\nu}_{\tau}\nu_{\mu}\bar{\nu}_e$  и  $e^+e^- \rightarrow \mu^-e^+\nu_{\tau}\bar{\nu}_{\tau}\nu_e\bar{\nu}_{\mu}$  с неполяризованными  $e^-$  и  $e^+$  пучками. В [21] получены аналитические выражения для антисимметричных относительно СР преобразования частей соответствующих сечений при инвариантных массах  $\sqrt{s} \ll m_Z$ ,  $m_Z$  – масса Z бозона. Модифицированная  $\gamma \tau^+ \tau^-$  вершина имеет вид

$$\Gamma^{\mu} = -ie\left[\gamma^{\mu} + \frac{\sigma^{\mu\nu}k_{\nu}}{2M}F_3^{\tau}(k^2)\gamma_5\right], \quad k^2 = s.$$

 $e^+e^- \rightarrow \tau^+\tau^-$ . Рассмотрим продольно поляризованный  $e^-$  и неполяризованный  $e^+$ пучки. При  $\sqrt{s} \ll m_Z$  будем пренебрегать вкладом Z бозона. Тогда сечение  $d\sigma_0$  процесса  $e^+e^- \rightarrow \tau^+\tau^-$ , просуммированное по поляризациям  $\tau^+$ , в сцм равно

$$\begin{split} d\sigma_0 &= \frac{\beta \alpha^2}{4s} \left[ 1 - \frac{q_\perp^2}{2E^2} + \boldsymbol{\zeta} \boldsymbol{Z} \right] \, d\Omega_{\boldsymbol{q}} \,, \\ \boldsymbol{Z} &= \operatorname{Im} b \, \frac{q_\perp^2 \, \boldsymbol{q}}{ME(E+M)} - \operatorname{Im} b \, \frac{\boldsymbol{q}_\perp}{M} - \operatorname{Re} b \, \frac{[\boldsymbol{q}_\perp \times \boldsymbol{\Lambda}]}{M} + \frac{M}{E} \boldsymbol{\Lambda} + \frac{(\boldsymbol{q} \boldsymbol{\Lambda}) \, \boldsymbol{q}}{E(E+M)} \\ b &= F_3^{\tau}(s) \,, \quad s = 4E^2 \,, \quad \beta = q/E \,, \end{split}$$

где E – энергия электрона, q – импульс  $\tau^-$ ,  $q_\perp = q - \Lambda(q \cdot \Lambda)$ ,  $\zeta$  – спин  $\tau^-$ ,  $\Lambda = \lambda e_z$ , вектор  $e_z$  направлен по импульсу электрона,  $\lambda$  – спиральность электрона, мы отбросили в  $d\sigma_0$ 

квадратичные по *b* члены. Линейные по *b* члены входят только в зависящую от  $\boldsymbol{\zeta}$  часть сечения, а член  $\propto \operatorname{Re} b$  линейно зависит от  $\boldsymbol{\Lambda}$ . Чтобы вклад  $\operatorname{Re} b$  присутствовал в случае неполяризованного  $e^-$  пучка, необходимо измерить поляризацию  $\tau^+$ . Поляризацию  $\tau^-$  и  $\tau^+$  можно измерять, изучая различные моды распада  $\tau$ .

 $e^+e^- \rightarrow \tau^+\pi^-\nu_{\tau}$  и  $e^+e^- \rightarrow \tau^-\pi^+\bar{\nu}_{\tau}$ . Рассмотрим СР-нечетную асимметрию  $dA_{\pi}$ в процессах  $e^+e^- \rightarrow \tau^+\pi^-\nu_{\tau}$  и  $e^+e^- \rightarrow \tau^-\pi^+\bar{\nu}_{\tau}$  с продольно поляризованным  $e^-$  и неполяризованным  $e^+$  пучками

$$dA_{\pi} = \frac{d\sigma_{\pi}^{(-)}(\boldsymbol{k}) - d\sigma_{\pi}^{(+)}(-\boldsymbol{k})}{2\sigma_0} \propto \operatorname{Im} b \, d\boldsymbol{k} \,, \tag{1}$$

здесь  $d\sigma_{\pi}^{(-)}(\mathbf{k})$  – сечение процесса  $e^+e^- \rightarrow \tau^+\pi^-\nu_{\tau}$ ,  $d\sigma_{\pi}^{(+)}(-\mathbf{k})$  – сечение процесса  $e^+e^- \rightarrow \tau^-\pi^+\bar{\nu}_{\tau}$ ,  $\mathbf{k}$  – импульс пиона. В выражении (1) взят интеграл по  $d\Omega_{\mathbf{q}}$ . Видно, что  $dA_{\pi}$  содержит лишь Im *b*.

 $e^+e^- \rightarrow \tau^+\rho^-\nu_{\tau}$  и  $e^+e^- \rightarrow \tau^-\rho^+\bar{\nu}_{\tau}$ . Рассмотрим СР-нечетную асимметрию  $dA_{\rho}$  в процессах  $e^+e^- \rightarrow \tau^+\rho^-\nu_{\tau}$  и  $e^+e^- \rightarrow \tau^-\rho^+\bar{\nu}_{\tau}$  с продольно поляризованным  $e^-$  и неполяризованным  $e^+$  пучками

$$dA_{\rho} = \frac{d\sigma_{\rho}^{(-)}(\boldsymbol{p}, \boldsymbol{f}) - d\sigma_{\rho}^{(+)}(-\boldsymbol{p}, -\boldsymbol{f})}{2\sigma_0} \propto [C_1^{\rho} \operatorname{Re} b + C_2^{\rho} \operatorname{Im} b] d\boldsymbol{p}, \qquad (2)$$

здесь  $d\sigma_{\rho}^{(-)}(\boldsymbol{p}, \boldsymbol{f})$  – сечение процесса  $e^+e^- \rightarrow \tau^+\rho^-\nu_{\tau}$ ,  $d\sigma_{\rho}^{(+)}(-\boldsymbol{p}, -\boldsymbol{f})$  – сечение процесса  $e^+e^- \rightarrow \tau^-\rho^+\bar{\nu}_{\tau}$ ,  $\boldsymbol{p}$  и  $\boldsymbol{f}$  – импульс и поляризация  $\rho$  мезона. В выражении (2) взят интеграл по  $d\Omega_{\boldsymbol{q}}$ . Определить поляризацию  $\rho$  мезона можно из основного канала распада  $\rho^{\pm} \rightarrow \pi^{\pm}\pi^0$ . В  $dA_{\rho}$  дает вклад как Im b, так и Re b, причем  $C_1^{\rho} \propto ([\boldsymbol{\Lambda} \times \boldsymbol{f}]\boldsymbol{p})$ .

 $e^+e^- \rightarrow \tau^+e^-\nu_{\tau}\bar{\nu}_e$  и  $e^+e^- \rightarrow \tau^-e^+\nu_e\bar{\nu}_{\tau}$ . Рассмотрим СР-нечетную асимметрию  $dA_e$  в процессах  $e^+e^- \rightarrow \tau^+e^-\nu_{\tau}\bar{\nu}_e$  и  $e^+e^- \rightarrow \tau^-e^+\nu_e\bar{\nu}_{\tau}$  с продольно поляризованным  $e^$ и неполяризованным  $e^+$  пучками

$$dA_e = \frac{d\sigma_e^{(-)}(\boldsymbol{k}) - d\sigma_e^{(+)}(-\boldsymbol{k})}{2\sigma_0} \propto \left[C_1^e \operatorname{Re} b + C_2^e \operatorname{Im} b\right] d\Omega_{\boldsymbol{q}} d\boldsymbol{k}, \qquad (3)$$

здесь  $d\sigma_e^{(-)}(\mathbf{k})$  – сечение процесса  $e^+e^- \rightarrow \tau^+e^-\nu_\tau\bar{\nu}_e$ ,  $d\sigma_e^{(+)}(-\mathbf{k})$  – сечение процесса  $e^+e^- \rightarrow \tau^-e^+\nu_e\bar{\nu}_\tau$ ,  $\mathbf{k}$  – импульс электрона. В  $dA_e$  дает вклад как Im b, так и Re b, причем  $C_1^e \propto ([\mathbf{\Lambda} \times \mathbf{q}]\mathbf{k})$ . Если проинтегрировать (3) по  $d\Omega_{\mathbf{q}}$  и  $d\Omega_{\mathbf{k}}$ , то получим асимметрию, которая изображена на Рис. 1. Эта асимметрия имеет излом при  $k = k_0 = (E - q)/2$ . Если  $E/M \rightarrow 1$ , то  $k_0/k_{max} \rightarrow 1$ , а если  $E/M \rightarrow \infty$ , то  $k_0/k_{max} \rightarrow 0$ .

 $e^+e^- \rightarrow \tau^+\tau^- \rightarrow \pi^+\pi^-\nu_{\tau}\bar{\nu}_{\tau}$ . Рассмотрим СР-нечетную асимметрию  $dA_{\pi\pi}$  в процессе  $e^+e^- \rightarrow \pi^+\pi^-\nu_{\tau}\bar{\nu}_{\tau}$  с неполяризованными  $e^-$  и  $e^+$  пучками

$$dA_{\pi\pi} = \frac{d\sigma_{\pi\pi}(\boldsymbol{k}_1, \boldsymbol{k}_2) - d\sigma_{\pi\pi}(-\boldsymbol{k}_2, -\boldsymbol{k}_1)}{2\sigma_0} \propto \left[D_1^{\pi} \operatorname{Re} b + D_2^{\pi} \operatorname{Im} b\right] d\boldsymbol{k}_1 d\boldsymbol{k}_2,$$

здесь  $d\sigma_{\pi\pi}(\mathbf{k}_1, \mathbf{k}_2)$  – сечение процесса  $e^+e^- \rightarrow \tau^+\tau^- \rightarrow \pi^+\pi^-\nu_\tau\bar{\nu}_\tau$ ,  $\mathbf{k}_1$  и  $\mathbf{k}_2$  – импульсы  $\pi^-$  и  $\pi^+$ , а также взят интеграл по  $d\Omega_q$ . Видно, что  $dA_{\pi\pi}$  содержит как Re b, так и Im b. Проинтегрировав по модулям векторов  $\mathbf{k}_1$  и  $\mathbf{k}_2$ , получим

$$\frac{dA_{\pi\pi}}{d\Omega_1 \, d\Omega_2} \propto \left\{ G_1(x) \frac{\left[ (\mathbf{\Lambda} \mathbf{n}_1)^2 - (\mathbf{\Lambda} \mathbf{n}_2)^2 \right]}{\sqrt{1 - x^2}} \operatorname{Im} b + G_2(x) \frac{\left[ (\mathbf{\Lambda} \mathbf{n}_1) - (\mathbf{\Lambda} \mathbf{n}_2) \right] \left( \left[ \mathbf{n}_1 \times \mathbf{n}_2 \right] \mathbf{\Lambda} \right)}{\sqrt{2(1 - x)(1 - x^2)}} \operatorname{Re} b \right\},$$
(4)

где  $\mathbf{n}_{1,2} = \mathbf{k}_{1,2}/k_{1,2}, x = \mathbf{n}_1\mathbf{n}_2$ . Функции  $G_1(x)$  и  $G_2(x)$  изображены на Рис. 2. Если сделать преобразование  $\mathbf{n}_1 \leftrightarrow \mathbf{n}_2$ , то коэффициент перед Im *b* сменит знак, а коэффициент перед Re *b* не поменяет знак. Наоборот, если сделать преобразование  $\mathbf{n}_{1,2} \rightarrow -\mathbf{n}_{1,2}$ , то коэффициент перед Im *b* не поменяет знак, а коэффициент перед Re *b* сменит знак.

 $e^+e^- \rightarrow \tau^+\tau^- \rightarrow e^+e^-\nu_\tau\bar{\nu}_\tau\nu_e\bar{\nu}_e$ . Рассмотрим СР-нечетную асимметрию  $dA_{ee}$  в процессе  $e^+e^- \rightarrow e^+e^-\nu_\tau\bar{\nu}_\tau\nu_e\bar{\nu}_e$  с неполяризованными  $e^-$  и  $e^+$  пучками

$$dA_{ee} = rac{d\sigma_{ee}(\boldsymbol{k}_1, \boldsymbol{k}_2) - d\sigma_{ee}(-\boldsymbol{k}_2, -\boldsymbol{k}_1)}{2\sigma_0} \propto \left[D_1^e \operatorname{Re} b + D_2^e \operatorname{Im} b\right] d\boldsymbol{k}_1 d\boldsymbol{k}_2 \,,$$

здесь  $d\sigma_{ee}(\mathbf{k}_1, \mathbf{k}_2)$  – сечение процесса  $e^+e^- \rightarrow e^+e^-\nu_\tau\bar{\nu}_\tau\nu_e\bar{\nu}_e$ ,  $\mathbf{k}_1$  и  $\mathbf{k}_2$  – импульсы  $e^-$  и  $e^+$ , а также взят интеграл по  $d\Omega_q$ . Видно, что  $dA_{ee}$  содержит как  $\operatorname{Re} b$ , так и  $\operatorname{Im} b$ . Проинтегрировав по модулям векторов  $\mathbf{k}_1$  и  $\mathbf{k}_2$ , получим

$$\frac{dA_{ee}}{d\Omega_1 d\Omega_2} \propto \left\{ -\frac{G_1(x)}{3} \frac{\left[ (\mathbf{\Lambda} \mathbf{n}_1)^2 - (\mathbf{\Lambda} \mathbf{n}_2)^2 \right]}{\sqrt{1 - x^2}} \operatorname{Im} b + \frac{G_2(x)}{9} \frac{\left[ (\mathbf{\Lambda} \mathbf{n}_1) - (\mathbf{\Lambda} \mathbf{n}_2) \right] \left( \left[ \mathbf{n}_1 \times \mathbf{n}_2 \right] \mathbf{\Lambda} \right)}{\sqrt{2(1 - x)(1 - x^2)}} \operatorname{Re} b \right\}$$
(5)

где  $\mathbf{n}_{1,2} = \mathbf{k}_{1,2}/k_{1,2}, x = \mathbf{n}_1\mathbf{n}_2$ . Формулы (4) и (5) имеют одинаковую структуру, хотя матричные элементы распадов  $\tau^- \to \pi^-\nu_{\tau}$  и  $\tau^- \to e^-\bar{\nu}_e\nu_{\tau}$  сильно отличаются. Поскольку масса  $\mu$  мала по сравнению с массой  $\tau$ , асимметрии в процессах  $e^+e^- \to \mu^+\mu^-\nu_{\tau}\bar{\nu}_{\tau}\nu_{\mu}\bar{\nu}_{\mu},$  $e^+e^- \to \mu^+e^-\nu_{\tau}\bar{\nu}_{\tau}\nu_{\mu}\bar{\nu}_e$  и  $e^+e^- \to \mu^-e^+\nu_{\tau}\bar{\nu}_{\tau}\nu_e\bar{\nu}_{\mu}$  имеют аналогичный вид.

Заключение. Рассмотрены СР-нечетные асимметрии в процессах  $e^+e^- \rightarrow \tau^+\pi^-\nu_{\tau}$ ,  $e^+e^- \rightarrow \pi^+\tau^-\bar{\nu}_{\tau}$ ,  $e^+e^- \rightarrow \tau^+\rho^-\nu_{\tau}$ ,  $e^+e^- \rightarrow \rho^+\tau^-\bar{\nu}_{\tau}$ ,  $e^+e^- \rightarrow \tau^+e^-\nu_{\tau}\bar{\nu}_e$  и  $e^+e^- \rightarrow \tau^-e^+\nu_e\bar{\nu}_{\tau}$  с продольно поляризованным электронным и неполяризованным позитронным пучками, а также в процессах  $e^+e^- \rightarrow \pi^+\pi^-\nu_\tau\bar{\nu}_\tau$ ,  $e^+e^- \rightarrow e^+e^-\nu_\tau\bar{\nu}_\tau\nu_e\bar{\nu}_e$ ,  $e^+e^- \rightarrow \mu^+\mu^-\nu_\tau\bar{\nu}_\tau\nu_\mu\bar{\nu}_\mu$ ,  $e^+e^- \rightarrow \mu^+e^-\nu_\tau\bar{\nu}_\tau\nu_\mu\bar{\nu}_e$  и  $e^+e^- \rightarrow \mu^-e^+\nu_\tau\bar{\nu}_\tau\nu_e\bar{\nu}_\mu$  с неполяризованными электронным и позитронным пучками для  $e^+e^-$  инвариантных масс  $\sqrt{s} \ll m_Z$ . Подробные вычисления и полные выражения для асимметрий можно найти в статье [21]. Показано, что для измерения Im *b* поляризация не нужна, а для измерения Re *b* необходимости в поляризации нет, но её наличие упрощает измерение. Сегодня не существуют эксперименты с продольно поляризованными электронными пучками. Такой эксперимент планируется провести на Супер-Чарм-Тау фабрике (СЧТФ) [22]. СЧТФ – это  $e^+e^-$  коллайдер со светимостью ~  $10^{35}$  см<sup>-2</sup> с<sup>-1</sup> и энергией в сцм от 3 до 5 – 7 ГэВ. Он станет интенсивным источником  $\tau$  лептонов. В силу СРТ теоремы Im b = 0. При характерном масштабе НФ  $\Lambda_{NP} \gg M$  можно ожидать Im  $b \ll Re b$  при  $s \gtrsim M$ . По этой причине использование продольно поляризованных электронных пучков, которые упрощают измерение Re b, очень важно.

- 1. X. Chen and Y. Wu, J. High Energy Phys. 10 (2019) 089.
- 2. S. Eidelman et al. J. High Energy Phys. 03 (2016) 140.
- 3. M. J. Booth, arXiv:hep-ph/9301293.
- 4. U. Mahanta, Phys. Rev. D 54, 3377 (1996).
- 5. Y. Yamaguchi and N. Yamanaka, Phys. Rev. Lett. 125, 241802 (2020).
- 6. Y. Yamaguchi and N. Yamanaka, Phys. Rev. D 103, 013001 (2021).
- 7. S. M. Barr and W. J. Marciano, Adv. Ser. Direct. High Energy Phys. 3, 455 (1989).
- 8. J. A. Grifols and A. Mendez, Phys. Lett. B 255, 611 (1991); 259 512(E) (1991).
- 9. R. Escribano and E. Masso, Phys. Lett. B **301**, 419 (1993).
- 10. R. Escribano and E. Masso, Phys. Lett. B 395, 369 (1997).
- 11. L. Taylor, Nucl. Phys. B, Proc. Suppl. 55, 285 (1997).
- 12. K. Ackerstaff et al. (OPAL Collaboration), Phys. Lett. B 431, 188 (1998).
- 13. M. Acciarri et al. (L3 Collaboration), Phys. Lett. B 434, 169 (1998).
- 14. J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 35, 159 (2004).
- 15. P. Achard et al. (L3 Collaboration), Phys. Lett. B 585, 53 (2004).
- 16. A. E. Blinov and A. S. Rudenko, Nucl. Phys. B, Proc. Suppl. 189, 257 (2009).

- 17. A. G. Grozin, I. B. Khriplovich and A. S. Rudenko, Phys. At. Nucl. 72, 1203 (2009).
- 18. H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 485, 37 (2000).
- 19. K. Inami et al. (Belle Collaboration), Phys. Lett. B 551, 16 (2003).
- 20. K. Inami et al. (Belle Collaboration), J. High Energy Phys. 04 (2022) 110.
- 21. I. V. Obraztsov and A. I. Milstein, Phys. Rev. D 107, 093001 (2023).
- 22. https://sct.inp.nsk.su/media/cdr/SCT\_Physics\_Program\_\_rus\_Egsu8BE.pdf.



**Рис. 1.** Асимметрия  $dA_e/dk$  в единицах  $S = B_e \text{Im} b/M$  как функция  $k/k_{max}$  для E = 1.5M(сплошная кривая), E = 2M (пунктирная кривая), E = 2.5M (штриховая кривая), где  $k_{max} = (E+q)/2, B_e$  – бранчинг распада  $\tau^- \to e^- \bar{\nu}_e \nu_{\tau}$ .



**Рис. 2.** Зависимость функций  $G_1(x)$  (слева) и  $G_2(x)$  (справа) от  $x = n_1 n_2$  для E = 1.5M (сплошная кривая), E = 2M (пунктирная кривая), E = 2.5M (штриховая кривая).