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Abstract

Peculiar properties of the BFKL approach in the next-to-next-to-
leading logarithmic approximation (NNLLA) are discussed. In this
approximation the scheme of derivation of the BFKL equation must
be changed because of violation of the simple factorized form of ampli-
tudes with multi-Reggeon exchanges and necessity to take into account
imaginary parts of amplitudes in the unitarity relations.
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1 Introduction

The BFKL (Balitsky-Fadin-Kuraev-Lipatov) approach [1, 2, 3, 4] provides a
general way for the theoretical description of processes at high c.m.s. energy√
s and fixed (not growing with s) momentum transfers. It is based on a

remarkable property of QCD – gluon Reggeization [5], which gives a very
powerful tool for the description of such processes. This property makes it
possible to derive the equation of evolution of the amplitudes of processes
with energy (the BFKL equation). Now the BFKL approach is well devel-
oped in the leading logarithmic approximation (LLA), which summarizes the
terms (αs ln s)

n and in the next after it (NLLA), giving the opportunity to
summarize also the terms αs(αs ln s)

n (see e.g. [6] and references therein).
Development of the next (NNLLA) approximation is a long-standing prob-
lem, actual both in terms of phenomenology and theory. There is no doubt
that such a development is possible. It turns out, however, that the scheme
of derivation of the BFKL equation must be changed in the NNLLA.

2 The scheme of derivation of the BFKL

equation

The BFKL equation is derived by analyzing the s-channel discontinuities of
elastic amplitudes calculated using unitarity. The main contributions to the
discontinuities are given by the multi-Regge kinematics (MRK). Due to the
Reggeization, the amplitudes used in the unitarity conditions have a simple
factorized form in the NLLA as well as in the LLA. The Reggeization allows
to express an infinite number of amplitudes through several effective vertices
and gluon trajectory. For elastic scattering processes A + B → A′ + B′ the
Reggeization means that scattering amplitudes with gluon quantum numbers
in the t-channel in the Regge kinematic region s ≃ −u → ∞, t fixed, can be
presented as

AA′B′

AB = ΓR
A′A

[

(−s

−t

)ω(t)

−
(

s

−t

)ω(t)
]

ΓR
B′B , (1)
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where ΓR
P ′P are energy-independent particle-particle-Reggeon (PPR) vertices

(or scattering vertices), j(t) = 1 + ω(t) is the Reggeized gluon trajectory.
The Reggeization means also definite (multi-Regge) form of production am-
plitudes in the multi-Regge kinematics (MRK). MRK is the kinematics where
all particles have limited (not growing with s) transverse momenta and are
combined into jets with limited invariant mass of each jet and large (grow-
ing with s) invariant masses of any pair of the jets. This kinematics gives
dominant contributions to cross sections of QCD processes at high energy√
s.
For the amplitude A2→n+2 of the process A+B → A′+G1+ . . .+Gn+B′

of production of n gluons with momenta k1, k2, . . . kn the MRK means

s ≫ si ≫ |ti| ≃ ~q 2
i , s ≃

∏n+1
i=1 si

∏n
i=1

~k 2
i

, (2)

where

s = (pA + pB)
2, si = (ki−1 + ki)

2, i = 1, · · ·n+ 1, k0 ≡ PA′ , kn+1 ≡ PB′ ,
(3)

q1 = pA − p′A, qj+1 = qj − kj , j = 1, · · ·n, qn+1 = pB′ − pB , (4)

the vector sign means transverse to the pA, pB plane components. In this
region, one has for the amplitude A2→n+2

ℜA2→n+2 = 2sΓR1

A′A

(

n
∏

i=1

1

ti

( si

|~ki−1||~ki|

)ω(ti)

γGi

RiRi+1

)

× 1

tn+1

( sn+1

|kn||~qn+1|
)ω(tn+1)

Γ
Rn+1

B′B . (5)

Here ΓR
A′A and ΓR

B′B are the same scattering vertices as in (1) and γGi

RiRi+1
are

the Reggeon-Reggeon-Particle (RRP) vertices (or the production vertices).
In the LLA only gluons can be produced. In the NLA one has to consider

not only the amplitudes (1), (5), but also amplitudes obtained from them by
replacement of one of final particles by a jet containing a couple of particles
with fixed (of order of transverse momenta) invariant mass.

The Reggeon vertices and the gluon trajectory are known in the next-to-
leading order (NLO), that means the one-loop approximation for the vertices
and the two-loop approximation for the trajectory. It is just the accuracy
which is required for the derivation of the BFKL equation in the NLLA.
Validity of the forms (1) and (5 is proved now in all orders of perturbation
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theory in the coupling constant g both in the LLA [7] and in the NLLA [8, 9,
10, 11, 12]. Note that the simple factorized form (5 is valid only for the real
part of the amplitudes (the sign ℜ in the Equation (5) means “real part”).
Fortunately, the imaginary parts are not essential for the derivation of the
BFKL equation in the NLLA.

The Reggeization provides a simple derivation of the BFKL equation both
in the LLA and NLLA. Two-to-two scattering amplitudes with all possible
quantum numbers in the t–channel are calculated using Equation (1) and (5)
in the s-channel unitarity relations and analyticity. The s-channel disconti-
nuities of the processes A + B → A′ + B′ are presented as the convolutions
ΦA′A ⊗ G ⊗ ΦB′B , where the impact factors ΦA′A and ΦB′B describe tran-
sitions A → A′ and B → B′ due to interactions with Reggeized gluons, G is
the Green’s function for two interacting Reggeized gluons with an operator

form Ĝ = eY K̂, where Y = ln(s/s0), s0 is an energy scale, K̂ is the BFKL
kernel. The impact factors and the BFKL kernel are expressed in terms of the
Reggeon vertices and trajectory. Energy dependence of scattering amplitudes
is determined by the BFKL kernel, which is universal (process independent).
The kernel K̂ = ω̂∞+ ω̂2+ K̂r is expressed through the Regge trajectories ω̂1

and ω̂2 of two gluons and the “real part" K̂r describing production of parti-
cles in their interaction: K̂r = K̂G + K̂QQ̄ + K̂GG. In the LLA only K̂G must
be kept, because only gluons can be produced; in the NNLLA production of
quark-antiquark (QQ̄) and gluon (GG) pairs is also possible.

One might think that this scheme is applicable in the NNLLA as well.
In this case it would be sufficient to calculate three-loop corrections to the
trajectory, two-loop corrections to K̂G, one-loop corrections to K̂QQ̄ and K̂GG

and to find in the Born approximation two new contributions, K̂QQ̄G and

K̂GGQ, to K̂r.
Unfortunately, the scheme based on the forms (1) and (5) does not work

in the NNLLA. The reason is the need to take account of the contributions
of Regge cuts and the imaginary parts of the amplitudes in the unitarity
conditions.

3 Contributions of the three-Reggeon cut

In the NLLA, two large logarithms can be lost in the product of two ampli-
tudes in the unitarity condition used for derivation of the BFKL equation.
It can be done losing either both logarithms in one of the amplitudes, or one
logarithm in each of the amplitudes. In the first case one of the amplitudes
is taken in the NNLLA and the other in the LLA. Since the amplitudes in
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the LLA are real, only real parts of the NNLLA amplitudes are important in
this case. But even for these parts the forms (1) and (5) become inapplicable
because of the contributions of the three-Reggeon cut that appear in this
approximation.

The first observation of the violation of the form (1) was made [13] in
the consideration of the high-energy limit of the two-loop amplitudes for
quark-quark (qq), quark-gluon (qg) and gluon-gluon (gg) scattering. The
interference of the tree- and two-loop amplitudes for each of the processes
has been explicitly computed. The discrepancy appears in non-logarithmic
two-loop terms. If the form (1) would be correct in the NNLLA, they should
satisfy the certain relation, because in (1) three amplitudes are expressed in
terms of only two vertices ΓR

QQ and ΓR
GG. The explicit calculation gives that

this relation is violated by terms of O(π2/ǫ2).
Detailed consideration of the terms responsible for the violation of the

factorized form (1) in the case of two-loop and three-loop quark and gluon
amplitudes was performed in [14, 15, 16]. In particular, the non-logarithmic
double-pole contribution at two-loops obtained in [13] was recovered and all
non-factorizing single-logarithmic singular contributions at three loops were
found using the techniques of infrared factorization.

All these results are explained by the three-Regge cut contributions [17].
Since our Reggeons are the Reggeized gluons, the cut starts from the diagrams
with three-gluon exchanges. In the Feynman gauge the contribution of these
diagrams to the amplitudes Aa with the adjoint representation of the colour
group in the t-channel has the form

Aa
ij = 〈A′|T a|A〉〈B′|T a|B〉

[

CijA
(eik) +

N2
c

8

(

As
ij +Au

ij

)

+

+δi,qδij,q
4−N2

c

8

(

As
ij − Au

ij

)

]

, (6)

where ij are qq, qg and gg for quark-quark, quark-gluon and gluon-gluon
scattering correspondingly, As

ij and Au
ij are the the contributions of the ladder

diagrams in the s and u channels respectively with omitted colour group
factors, A(eik) is the sum of such contributions for all the diagrams, and Cij

are the colour group coefficients:

Cqq =
1

4

(

−1 +
3

N2
c

)

, Cqg =
1

4
, Cgg =

3

2
. (7)

The last term in (6) is the contribution of the positive signature in the quark-
quark scattering and is imaginary. The second term has the form (1) and
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can be assigned to the Reggeized gluon contribution. On the contrary, this
is not true for the first term, because

2Cgq 6= Cqq + Cgg . (8)

Exactly this term is responsible for the violation of the factorized form (1)
at the two-loop level discovered in [13] and confirmed in [15]. This follows

from the explicit form Aeik = g2(s/t)(−4π2/3)g4 ~q 2 A
(3)
⊥ ,

A
(3)
⊥ =

∫

d2+2ǫl1d
2+2ǫl2

(2π)2(3+2ǫ)~l 21
~l 22 (~q −~l1 −~l2)2

=

= 3C2
Γ

4

ǫ2
(~q 2)2ǫ

~q 2

Γ2(1 + 2ǫ)Γ(1− 2ǫ)

Γ(1 + ǫ)Γ2(1 − ǫ)Γ(1 + 3ǫ)
, (9)

CΓ =
Γ(1− ǫ)Γ2(1 + ǫ)

(4π)2+ǫΓ(1 + 2ǫ)
. (10)

However, one can not affirm that this term is given entire by the three-
Reggeon cut. Indeed, the coefficients Cij in (7) can be presented as the sum

Cij = CR
ij + CC

ij , (11)

with the coefficients CR
ij satisfying the equality

2CR
qg = CR

qq + CR
gg . (12)

The terms with CR
ij have the form (1) and can be assigned to the Reggeized

gluon contribution, so that the contribution of the three-Reggeon cut can be
given by the terms with CC

ij only. Since the coefficients CR
ij obey only one

condition, there is a great freedom in their choice. It occurs [17] that

CR
gg = 3 , CC

gg = −3

2
, CR

gq =
7

4
, CC

gq = −3

2
, CR

qq =
1

2
, CC

qq =
3(1−N2

c )

4N2
c

.

(13)
The Reggeon and three-Reggeon cut contributions have different dependence
on s. In the case of the Reggeized gluon it come solely from the Regge factor
as in (1). In the case of the three-Reggeon cut, one has to take into account
the Reggeization of each of the three gluons and the interaction between
them. For the first logarithmic correction, the Reggeization gives ln s with
the coefficient 3CR, where

CR = −g2NcCΓ
4

3ǫ
(~q 2)ǫ

Γ(1− 3ǫ)Γ(1 + 2ǫ)Γ(1 + 3ǫ)

Γ(1 − ǫ)Γ(1− 2ǫ)Γ(1 + ǫ)Γ(1 + 4ǫ)
. (14)
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Interaction between two Reggeons with transverse momenta ~l1 and ~l2 and
colour indices c1 and c1is given by the real part of the BFKL kernel

[

Kr(~q1, ~q2;~k)
]c′1c

′

2

c1c2
= T a

c1c
′

1
T a
c2c

′

2

g2

(2π)D−1

[

~q 2
1 ~q

′ 2
2 + ~q 2

2 ~q
′ 2
1

~k 2
− ~q 2

]

, (15)

where ~k is the momentum transferred from one Reggeon to another in the
interaction, ~q ′

1 and ~q ′
2 (c′1 and c′2) are the Reggeon momenta (colour indices)

after the interaction, ~q ′
1 = ~q1 − ~k, ~q ′

2 = ~q2 + ~k, and ~q = ~q1 + ~q2 = ~q ′
1 + ~q ′

2 .
It occurs that, for the colour structure which we are interested in, account

of interactions between all pairs of the Reggeons leads to the sum of the colour
coefficients which differ from the coefficients Cij (7) only by the common
factor Nc. Therefore, the first order correction in the case of the three-
Reggeon cut is presented as (−4CR − C3) ln s, where the CR and C3 come
correspondingly from the first two terms and the last term in the square
brackets in (15),

C3 = g2NcCΓ
32

9ǫ
(~q 2)ǫ

Γ(1− 3ǫ)Γ(1− ǫ)Γ2(1 + 3ǫ)

Γ2(1− 2ǫ)Γ(1 + 2ǫ)Γ(1 + 4ǫ)
. (16)

Thus, the first order correction in the case of the three-Reggeon cut is (−CR−
C3) ln s, where CR and C3 are given by (14) and (16) respectively, and in the
case of Reggeized gluon is ω(t) ln s, where

ω(t) = −g2Nc~q
2

∫

d2+2ǫl

2(2π)(3+2ǫ)~l 2(~q −~l)2
= −g2NcCΓ

2

ǫ
(~q 2)ǫ . (17)

With the colour coefficients (11), (13), the terms singular in ǫ of the total
correction agree with the result obtained in [16].

Evidently, the three-Reggeon cut gives contributions to all 2 → n + 2
amplitudes in the MRK. They must be also found for further development
of the BFKL approach.

4 Account of imaginary parts

The sign ℜ in the Equation (5) means the “real part”. It is important that the
simple factorized form (5) is valid only for the real part of the amplitudes.
Fortunately, the imaginary parts are not essential for the derivation of the
BFKL equation in the NLLA. Indeed, they are suppressed by one power of
ln si in comparison with the real ones, and products of imaginary and real
parts in the unitarity relations cancel due to summation of contributions
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complex conjugated to each other. But their account becomes necessary in
the NNLLA.

Fortunately, the imaginary parts are needed only in the main approxi-
mation, so that their calculation is not associated with large computational
difficulties. However, it complicates the derivation of the BFKL equation
and deprives its universality, because consideration of quark-quark, quark-
gluon and gluon-gluon scattering becomes different. It is clear already from
consideration of two-particle intermediate states in the unitarity condition.
Remind that for two Reggeized gluons in the t-channel in QCD, that is for
three colours, there are 6 irreducible representations: 1, 8a, 8s, 10, 10, 27 (for
Nc > 3 there is one additional representation). The representations 8a, 10, 10
are anti-symmetric, while the representations 1, 8s, 27 (and the extra one for
Nc > 3) are symmetric. In real parts, with the NLLA accuracy, only the
Reggeon channel, 8a, is important. It provides universality of the NLLA:
gg, qg and qq scattering can be considered in an unique way.

But account imaginary parts violate the universality, because gg scatter-
ing amplitudes can contain all the representations, while qg and qq amplitudes
only 1, 8a, 8s.

Consideration of many-particle states in the unitarity condition is an even
more complicated problem.

5 Summary

The basis of the BFKL approach is the remarkable property of QCD — gluon
Reggeization. In this approach amplitudes of elastic scattering are restored
analytically from the imaginary parts calculated using unitarity. The main
contributions to the imaginary parts in the unitarity conditions come from
the multi-Regge kinematics (MRK). In the leading (LLA) and next-to-leading
(NLLA) logarithmic approximations the Reggeization provides with required
accuracy a simple factorized form of QCD amplitudes used in the unitarity
conditions. In the NNLLA such form is violated by the three-Reggeon cut
and by imaginary parts of the amplitudes. For further development of the
BFKL approach the Regge cut contributions must be found. Contributions
of the three–Reggeon cut to elastic amplitudes were found in [17] and are
presented here. Account of this cut in inelastic amplitudes is under consid-
eration. As regards the imaginary parts required in the unitarity conditions,
the way of their calculation is known. Unfortunately, the need to take them
into account violates universality of the derivation of the BFKL equation for
various processes, as well as the need to incorporate the Regge cuts.
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