УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им. Г.И. Будкера СО РАН СИБИРСКОГО ОТДЕЛЕНИЯ РАН (ИЯФ СО РАН)

В.П. Дружинин, Л.А. Кардапольцев, В.А. Таюрский

ГЕНЕРАТОР СОБЫТИЙ ДВУХФОТОННОГО ПРОЦЕССА $e^+e^- \rightarrow e^+e^-R \ (J^{PC}=0^{-+})$ С УЧЕТОМ РАДИАЦИОННЫХ ПОПРАВОК В РЕЖИМЕ С ОДНОКРАТНЫМ МЕЧЕНИЕМ

ИЯФ 2010-30

НОВОСИБИРСК 2010

Генератор событий двухфотонного процесса $e^+e^- \rightarrow e^+e^-R \ (J^{PC}=0^{-+})$ с учетом радиационных поправок в режиме с однократным мечением

В.П. Дружинин *, Л.А. Кардапольцев **, В.А. Таюрский ***

* Институт ядерной физики им. Г.И. Будкера, Новосибирский Государственный университет, Новосибирск 630090, Россия

** Новосибирский Государственный университет, Институт ядерной физики им. Г.И. Будкера, 630090, Новосибирск, Россия

*** Институт ядерной физики им. Г.И. Будкера, Новосибирск 630090, Россия email: tayursky@inp.nsk.su

Аннотация

Описывается монте-карловский генератор GGRESRC, разработанный для моделирования событий двухфотонного процесса $e^+e^- \rightarrow e^+e^-R$ с образованием псевдоскалярных резонансов π^0 , η , η' , η_c и η_b . Программа оптимизирована для генерации событий в режиме с однократным мечением. В генератор включено моделирование радиационных поправок в этом режиме, в том числе излучение фотонов в начальном и конечном состояниях.

The event generator for the two-photon process $e^+e^- \rightarrow e^+e^-R \ (J^{PC}=0^{-+})$ with account of radiative corrections in the single-tag mode

V.P. Druzhinin, L.A. Kardopoltsev, V.A. Tayursky

Budker Institute of Nuclear Physics and Novosibirsk State University, 630090, Novosibirsk, Russia

Abstract

The Monte Carlo event generator GGRESRC is presented in this work. The generator is developed for simulation of events of the two-photon process $e^+e^- \rightarrow e^+e^-R$ with production of the pseudoscalar resonances π^0 , η , η' , η_c , and η_b . The program is optimized for generation of two-photon events in the single-tag mode. For single-tag events, radiative correction simulation is implemented in the generator including photon emission from the initial and final states.

©Институт ядерной физики им. Г.И.Будкера СО РАН

1 Введение

Цель этой работы — разработка эффективного генератора событий двухфотонного рождения резонансов $e^+e^- \rightarrow e^+e^-R$ в режиме с однократным мечением (single-tag), когда один из конечных электронов¹ рассеивается на большой угол и регистрируется. Такой генератор требуется для моделирования экспериментов по измерению фотон-мезонных переходных формфакторов. Генератор GGRESRC, описанный в данной работе, использовался для измерения переходных формфакторов π^0 , η , η' и η_c в эксперименте BABAR. Для достижения требуемой точности (~ 1%) были учтены радиационные поправки к борновскому сечению, и разработано моделирование излучения дополнительных фотонов в начальном и конечном состоянии.

В двухфотонном процессе $e^+e^- \to e^+e^-R$ виртуальные фотоны, излученные сталкивающимися электронами, образуют *C*-чётный резонанс с четырёхимпульсом $k = k_1 + k_2$ (см. рис. 1). Пусть Q_2^2 – абсолютная

Рис. 1. Диаграмма двухфотонного процесса $e^+e^- \to e^+e^- + R$.

величина квадрата четырёхимпульса, переносимого пространственноподобным фотоном, связанным с регистрируемым (tagged) электроном, тогда как Q_1^2 - такой же параметр для нерегистрируемого (untagged) электрона ($Q_1^2 \approx 0$).

Измеряемый переходной формфактор извлекается из измеренного дифференциального сечения $({\rm d}\sigma/{\rm d}Q_2^2)_{\rm data}$ и сечения, рассчитанного ме-

¹Далее, если это специально не оговорено, мы используем термин "электрон" для обозначения как электрона, так и позитрона.

тодом Монте Карло $(d\sigma/dQ_2^2)_{\rm MC}$:

$$|F_{\gamma^*\gamma R}^{\text{data}}(Q_2^2)|^2 = \frac{(\mathrm{d}\sigma/\mathrm{d}Q_2^2)_{\text{data}}}{(\mathrm{d}\sigma/\mathrm{d}Q_2^2)_{\mathrm{MC}}} |F_{\gamma^*\gamma R}^{\mathrm{MC}}(Q_2^2)|^2, \tag{1}$$

где $|F^{MC}_{\gamma^*\gamma R}(Q^2_2)|^2$ — переходной формфактор, используемый в монтекарловском моделировании.

2 Борновское сечение

Для описания процесса $e^+e^- \to e^+e^-R$ используются переменные, показанные на рис. 1, а также шесть инвариантов:

$$t_1 = -Q_1^2 = k_1^2, \quad t_2 = -Q_2^2 = k_2^2,$$

$$s_1 = (p_1' + k)^2, \quad s_2 = (p_2' + k)^2,$$

$$s = (p_1 + p_2)^2, \quad W^2 = k^2 = (k_1 + k_2)^2.$$
(2)

Дифференциальное сечение этого процесса в низшем порядке КЭД равно [1]:

$$d\sigma = \frac{\alpha^2}{16\pi^4 t_1 t_2} \sqrt{\frac{(k_1 k_2)^2 - t_1 t_2}{(p_1 p_2)^2 - m_e^4}} \Sigma \frac{d^3 \vec{p'}_1}{E'_1} \frac{d^3 \vec{p'}_2}{E'_2},$$
(3)

где
 α — постоянная тонкой структуры, m_e — масса электро
на, E_i' — энергии рассеянных электронов,

$$\Sigma = 4\rho_1^{++}\rho_2^{++}\sigma_{TT} + 2\rho_1^{++}\rho_2^{00}\sigma_{TS} + 2\rho_1^{00}\rho_2^{++}\sigma_{ST} + \rho_1^{00}\rho_2^{00}\sigma_{SS}$$
(4)
+ $2|\rho_1^{+-}\rho_2^{+-}|\tau_{TT}\cos 2\tilde{\phi} - 8|\rho_1^{+0}\rho_2^{+0}|\tau_{TS}\cos\tilde{\phi}.$

Здесь $\tilde{\phi}$ – угол между плоскостями рассеяния электрона и позитрона в системе центра масс (с.ц.м.) виртуальных фотонов, σ_{ab} – сечения $\gamma^* \gamma^* \to R$ для неполяризованных поперечных (a, b = T) и скалярных (a, b = S) фотонов. Интерференционные члены, содержащие функции τ_{ab} , обусловлены поляризацией виртуальных фотонов. Функция τ_{TT} – это разность между сечениями для поперечных фотонов с параллельными и перпендикулярными линейными поляризациями: $\tau_{TT} = \sigma_{\parallel} - \sigma_{\perp}$, тогда как сечение для неполяризованных фотонов равно $\sigma_{TT} = (\sigma_{\parallel} + \sigma_{\perp})/2$.

Эффекты сильного взаимодействия полностью содержатся в функциях σ_{ab} и τ_{ab} . Все остальные функции, входящие в (4), рассчитываются в рамках КЭД. Выражения для матриц плотности виртуальных фотонов ρ_i^{++} , ρ_i^{+-} , ρ_i^{+0} , ρ_0^{00} (i = 1, 2) можно найти в работе [1].

В случае рождения псевдоскалярных мезонов только функции σ_{TT} и τ_{TT} не равны нулю, причём $\tau_{TT} = -2\sigma_{TT}$ [2]. Сечение σ_{TT} для узкого псевдоскалярного мезона массой M_R выражается через переходной формфактор согласно формуле:

$$\sigma_{TT}(W,Q_1^2,Q_2^2) = 8\pi \frac{\Gamma_{\gamma\gamma}}{M_R} \left| \frac{F(Q_1^2,Q_2^2)}{F(0,0)} \right|^2, \ |F(0,0)|^2 = \frac{4\Gamma_{\gamma\gamma}}{\pi\alpha^2 M_R^3},$$
(5)

где $\Gamma_{\gamma\gamma}$ – двухфотонная ширина мезона. Следует отметить, что в некоторых генераторах двухфотонных событий член с τ_{TT} не учитывается. Такое приближение справедливо только при изучении двухфотонных процессов в постановке по-tag, когда оба электрона рассеиваются под малыми углами и не регистрируются. Этот член даёт заметный вклад в дифференциальное сечение $d\sigma/dQ_2^2$ при больших Q_2^2 , и должен быть учтён при моделировании эксперимента с регистрацией рассеянного электрона.

В генераторе событий GGRESRC интегрирование дифференциального сечения выполняется с использованием инвариантных переменных (2). Для узкого псевдоскалярного резонанса уравнение (3) может быть записано в виде:

$$d\sigma = \frac{4\alpha^2 \Gamma_{\gamma\gamma}}{\pi s^2 t_1^2 t_2^2 M_R^3} \left| \frac{F(t_1, t_2)}{F(0, 0)} \right|^2 B \frac{dt_2 dt_1 ds_1 ds_2}{\sqrt{-\Delta_4}},$$
(6)

где $\Delta_4(s, s_1, s_2, t_1, t_2, M_R^2, m_e^2)$ – определитель Грама [3]. Физическая область значений переменных s_1, s_2, t_1, t_2 определяется условием $\Delta_4 \leq 0$. Функция *B* совпадает, с точностью до множителя, с функцией Σ (ур. (4)) для псевдоскалярных мезонов. Она была получена в работе [4] и даётся с помощью выражения:

$$B = \frac{1}{4}t_1t_2B_1 - 4B_2^2 + m_e^2B_3,\tag{7}$$

где

$$B_{1} = (4p_{1}p_{2} - 2p_{1}k_{2} - 2p_{2}k_{1} + k_{1}k_{2})^{2} + (k_{1}k_{2})^{2} - 16t_{1}t_{2} - 16m_{e}^{4},$$

$$B_{2} = (p_{1}p_{2})(k_{1}k_{2}) - (p_{1}k_{2})(p_{2}k_{1}),$$

$$B_{3} = t_{1}(2p_{1}k_{2} - k_{1}k_{2})^{2} + t_{2}(2p_{2}k_{1} - k_{1}k_{2})^{2} + 4m_{e}^{2}(k_{1}k_{2})^{2}.$$
(8)

В генераторе имеется две возможности описания зависимости переходного формфактора $F(Q_1^2, Q_2^2)$ от Q_1^2 и Q_2^2 : $F(Q_1^2, Q_2^2) = F(0, 0)$ и описание с помощью модели векторной доминантности (МВД):

$$|F|^{2} = \frac{1}{(1+Q_{1}^{2}/\Lambda^{2})^{2}(1+Q_{2}^{2}/\Lambda^{2})^{2}},$$
(9)

где $\Lambda = m_{\rho}$ для рождения π^0 , η , η' , $\Lambda = m_{J/\psi}$ для η_c и $\Lambda = m_{\Upsilon}$ для η_b . Величина $|F|^2$ в зависимости от Q_2^2 , вычисленная согласно (9) при $Q_1^2 = 0$ и $\Lambda = m_{\rho}$, показана на рис. 2.

Рис. 2. Фактор $|F|^2$ при $Q_1^2 = 0$, $\Lambda = m_{\rho} = 0.7755$ ГэВ.

Четырёхмерное монте-карловское интегрирование уравнения (6) выполняется с использованием метода, аналогичного тому, который применяется в генераторе двухфотонных событий GALUGA [5]. В этом методе, в частности, в первую очередь выполняется розыгрыш переменной t_2 . Это позволяет установить ограничение на Q_2^2 в начале моделирования события и заметно повысить эффективность генерации событий для режима с однократным мечением. Значения сгенерированных инвариантов t_2, t_1, s_1 и s_2 затем используются, вместе со случайным азимутальным углом системы конечных частиц, для вычисления четырёхимпульсов рассеянных электрона, позитрона и рождённого резонанса. Формулы для этих вычислений можно найти, например, в работе [6]. Основные моды распада π^0, η и η' также моделируются согласно [6].

В современных детекторах разрешение по массе зарегистрированного мезона сравнимо с полными ширинами резонансов η_c и η_b , или даже лучше. Поэтому распределения по массе указанных резонансов моделируются с использованием распределения Брейта-Вигнера.

3 Радиационная поправка

В режиме без мечения, когда электрон и позитрон рассеиваются на малые углы, радиационная поправка к борновскому сечению ожидается малой, меньше 1% [7]. Ситуация радикально меняется в режиме с однократным мечением, при рассеянии электрона на большой угол. При большом Q^2 поправка, обусловленная излучением в начальном состоянии, может достигать нескольких процентов и должна быть учтена в моделировании.

Независящая от процесса формула для радиационной поправки к двухфотонным процессам в следующем порядке КЭД для режима с однократным мечением была получена в работе [8]. Основной вклад в поправку происходит из вершины, связанной с регистрируемым электроном. Соответствующий вклад вершины, связанной с нерегистрируемым электроном, ожидается меньшим 0.5%, и им можно пренебречь. На рис. 3 показаны диаграммы, учтённые в работе [8]. Они относятся к левой вершине на рис. 1.

Рис. 3. Диаграммы, использованные для вычисления радиационных поправок.

Сечение для эксперимента в постановке с однократным мечением записывается в виде:

$$d\sigma = d\sigma_B(1+\delta) = d\sigma_B(1+\delta'+\delta_{VP}), \tag{10}$$

где $d\sigma_B$ – сечение в низшем порядке КЭД для данного процесса, например, даваемое уравнением (6). Полная радиационная поправка делится на две части:

- δ' включает виртуальную поправку, обусловленную интерференцией между диаграммами (a) и (c), мягкофотонную часть диаграмм (d)+(e) и поправку за счёт испускания реальных фотонов в начальном (диаграмма (e)) и конечном (диаграмма (d)) состояниях;
- іі. δ_{VP} поправка на поляризацию вакуума, обусловленная интерференцией между диаграммами (a) и (b).

Для получения δ' мы использовали результат работы [8] для полной радиационной поправки, удалив из него вклад диаграммы с поляризацией вакуума, δ_e (в работе [8] был учтен вклад только от электронов).

Полученная поправка равна:

$$\delta' = -\frac{\alpha}{\pi} \left\{ \left[\ln \frac{1}{r_{max}} - \frac{3}{4} \right] (L-1) + \frac{1}{4} \right\},\tag{11}$$

где r_{max} ($\ll 1$) — максимальная энергия фотона, излученного из начального состояния, в единицах энергии пучка E_b , $L = \ln (Q^2/m_e^2)$ и Q^2 — абсолютная величина квадрата передачи импульса электрону. Формула (11) не содержит ограничений на энергию фотонов, излученных в конечном состоянии, т.е. сечение, даваемое уравнением (10), получено для случая, когда регистрируемый электрон может излучать любую возможную энергию. Величина поправки δ' для девяти пар значений Q^2 и r_{max} представлена в таблице 1. В области Q^2 от 1 до 100 ГэВ², доступной на

$Q^2 \; (\text{GeV}^2)$	$r_{max}=0.03$	$r_{max}=0.05$	$r_{max}=0.1$
1	-9.1	-7.4	-5.2
10	-10.6	-8.6	-6.0
100	-12.1	-9.8	-6.8

Таблица 1. Поправка δ' (%) для ряда значений r_{max} и Q^2 .

B-фабриках, поправка δ' достигает 5–7% даже при относительно слабом ограничении ($r_{max}=0.1)$ на относительную энергию нерегистрируемого фотона, излученного в начальном состоянии.

Поправка δ' частично компенсируется поправкой на поляризацию вакуума δ_{VP} , для которой мы использовали расчёт, проведённый в работе [10], учитывающий вклады всех лептонов и адронов. Величина δ_{VP} в зависимости от Q^2 показана на рис. 4 вместе с поправкой δ_e . Величина полной поправки $\delta = \delta' + \delta_{VP}$, рассчитанная для 9 наборов Q^2 и r_{max} , представлена в таблице 2.

$Q^2 \; (\text{GeV}^2)$	$r_{max}=0.03$	$r_{max} = 0.05$	$r_{max}=0.1$
1	-5.9	-4.3	-2.0
10	-5.6	-3.7	-1.0
100	-4.8	-2.6	+0.4

Таблица 2. Полная поправка $\delta' + \delta_{VP}$ в %.

Излучение жёсткого фотона электроном искажает кинематику двухфотонного события. Для моделирования влияния этого эффекта на эффективность регистрации генератор событий включает генерацию дополнительных фотонов в начальном и конечном состояниях.

Рис. 4. Поправка на поляризацию вакуума в зависимости от Q^2 . На рисунке "All" – расчёт δ_{VP} с учётом вкладов e, μ, τ и адронов [10], "Electrons" – вклад только электронов δ_e .

3.1 Моделирование излучения в начальном состоянии

Для моделирования радиационную поправку удобно представить в виде

$$1 + \delta' \approx \left[1 + \frac{\alpha}{\pi} \left(\frac{3}{4}L - 1\right)\right] \int_0^{r_{max}} \frac{\beta dr}{r^{1-\beta}},\tag{12}$$

где $\beta = (\alpha/\pi)(L-1), r = E_{\gamma}/E_b,$ и E_{γ} – энергия фотона, излученного в начальном состоянии.

Функцию под интегралом можно интерпретировать как спектр фотонов. Действительно, при передаче $Q^2 = 1 \div 100 \ \Gamma \Im B^2$ параметр β мал ($\beta = 0.033 \div 0.044$), и функция приближённо равна спектру энергий жёстких фотонов, излученных в начальном состоянии [8]:

$$\frac{dN}{dr} = \frac{\alpha(L-1)}{\pi r}.$$
(13)

Для моделирования излучения дополнительного фотона четырёхмерное интегрирование в (6) заменяется на пятимерное, включающее интегрирование по переменной r

$$d\sigma = \left[1 + \frac{\alpha}{\pi} \left(\frac{3}{4}L - 1\right)\right] \frac{\beta}{r^{1-\beta}} d\sigma_B dr.$$
 (14)

Поправка на поляризацию вакуума делается с помощью замены

$$\alpha^2 \to \alpha^2 (1 + \delta_{VP}(Q_1^2))(1 + \delta_{VP}(Q_2^2))$$
(15)

в борновском сечении $\mathrm{d}\sigma_B$.

Для моделирования излучения в начальном состоянии используется приближение, что фотон излучается точно вдоль начального направления регистрируемого электрона. Так как энергия фотона ограничена условием $r < r_{max}$, ожидается, что это приближение не приводит к заметной систематической ошибке в определении эффективности регистрации. Следует заметить, что условия отбора, используемые в анализе данных, должны обеспечить выполнение условия $r < r_{max}$ как для экспериментальных, так и для моделированных событий.

Для повышения эффективности моделирования начальная генерация переменной r производится по распределению $\beta_0/r^{1-\beta_0}$, где $\beta_0 = \beta(Q_{min}^2)$, а Q_{min}^2 – нижняя граница по Q^2 регистрируемого электрона для события, моделируемого в режиме с однократным мечением. Если сгенерированное значение r больше порога r_{min} , фотон добавляется к списку конечных частиц события. В этом случае рассеянные e^+ и e^- и псевдоскалярный мезон моделируются в системе отсчёта с изменённой энергией с.ц.м. $2E_b\sqrt{1-r}$. Если $r < r_{min}$, то фотон не генерируется, и энергия с.ц.м. не изменяется, но множитель к сечению, связанный с радиационной поправкой, вычисляется.

3.2 Моделирование излучения в конечном состоянии

После того, как сгенерировано двухфотонное событие, моделируется излучение в конечном состоянии. Рассеявшийся на большой угол электрон в конечном состоянии с некоторой вероятностью "распадается" на $e + \gamma$. После чего модифицируется четырёхимпульс конечного мезона, чтобы обеспечить выполнение закона сохранения энергии-импульса. Вероятность излучения фотона с энергией больше чем $E_{\gamma,min}$ даётся с помощью формулы:

$$P(Q^2, x_{min}) = \frac{\alpha}{\pi(1+\delta')} \left[(L-1)\ln\frac{1}{x_{min}} - \frac{3}{4}L + 1 \right],$$
 (16)

где $x_{min} = E_{\gamma,min}/E$, и E – энергия электрона перед моделированием излучения. Эта формула получена интегрированием спектра фотонов, даваемого уравнением (23) работы [9]. Вероятность излучения в конечном состоянии в зависимости от Q^2 при $x_{min} = 0.1, 0.01$ и 0.001 показана на рис. 5.

Рис. 5. Вероятность излучения в конечном состоянии в зависимости от Q^2 .

Энергия фотона E_{γ} и угол θ_{γ} по отношению к направлению электрона перед излучением моделируются с помощью функции распределения [9]:

$$\frac{dN}{dx\,d\cos\theta_{\gamma}} = \frac{\alpha}{\pi x} \frac{1-x+x^2/2}{1-\beta\cos\theta_{\gamma}},\tag{17}$$

где $x = E_{\gamma}/E, \ \beta = \sqrt{1 - m_e^2/E'^2},$ и E' – энергия электрона после излучения фотона.

4 Сравнение с другими генераторами

Было выполнено сравнение полных сечений для режима без регистрации рассеянных электронов, рассчитанных с помощью GGRESRC и двух других генераторов двухфотонных событий GGRESPS [6] и TWOGAM [11]. Результаты монте-карловских расчётов идентичны для всех трёх генераторов, при условии, что в них используются одинаковые массы мезонов, их двухфотонные ширины и зависимость формфакторов от Q^2 . Генераторы GGRESRC и GGRESPS используют одну и ту же формулу (6), но разный порядок интегрирования по инвариантным переменным. Генератор TWOGAM был разработан для измерений с детектором CLEO фотон-мезонных переходных формфакторов [12]. Он основан на BGMS формализме [1] (уравнение (3)) и использует совсем другие переменные интегрирования, импульсы конечных электронов. Для процесса рождения π^0 в режиме с регистрацией рассеянного электрона было выполнено сравнение распределения по Q^2 , полученного с помощью GGRESRC без учёта радиационных поправок, и расчёта по программе TWOGAM. Было получено согласие результатов в пределах статистических ошибок монте-карловского расчёта.

Габлица 3. Параметры генератора GG

Название	Описание
$\mathbf{E}\mathbf{b}$	энергия пучка (ГэВ)
\mathbf{IR}	образуемый в $\gamma\gamma$ -процессе мезон: π^0 (= 1), η (= 2), η' (= 3),
	$\eta_c \ (=4), \ \eta_b \ (=5)$
IMode	мода распада мезона (см. таблицу 4
KVMDM	модель формфактора: константа $(= 0)$, МВД $(= 1)$
Itag	регистрируемая частица: e^+ (= 1), e^- (= 2), e^+ или e^- (= 3)
IRad	моделирование с/без радиационных поправок (= $1/0$)
$\mathbf{R}\mathbf{m}\mathbf{a}\mathbf{x}$	максимальная энергия излученного в начальном состоянии
	фотона в единицах Eb (0.1)
\mathbf{Rmin}	минимальная энергия излученного в начальном состоянии
	фотона в единицах Eb (10^{-4})
Kmin	минимальная энергия излученного в конечном состоянии
	фотона (0.001 ГэВ)
Q1Smin	минимальный квадрат передачи импульса (>0) для нере-
	гистрируемого электрона
Q1Smax	максимальный квадрат передачи импульса для нерегистри-
	руемого электрона
$\mathbf{Q2Smin}$	минимальный квадрат передачи импульса (>0) для реги-
	стрируемого электрона
Q2Smax	максимальный квадрат передачи импульса (>0) для реги-
	стрируемого электрона
Fmax	максимальный вес событий

5 Параметры генератора

В общих чертах алгоритм моделирования события в генераторе GGRESRC следующий:

• Электрон и позитрон сталкиваются в системе центра масс (S_0) . В этой системе считается, что положительное направление оси z совпадает с направлением пучка электронов (e^-) .

- Моделируется излучение жёсткого фотона в начальном состоянии. Фотон излучается вдоль оси столкновения. Если энергия фотона E_{γ} больше чем $r_{min}E_b$, параметры фотона добавляются к списку конечных частиц.
- Рассеянные электроны и мезон генерируются в новой с.ц.м. (S₁) с энергией 2E_b√1−E_γ/E_b; S₁ = S₀, если E_γ/E_b < r_{min}.
- Моделируется излучение в конечном состоянии. Если энергия фотона больше чем k_{min} , его параметры заносятся в список конечных частиц. Модифицируются импульсы регистрируемого электрона и рождённого мезона.
- Моделируется распад мезона.
- Импульсы конечных частиц преобразуются из систем
ы S_1 в систему $S_0.$

Таблица 4.	Моды	распада	мезонов	в	GGRESRC.	При	$IMode{=}0,$	распад
не моделиру	уется.							

Мезон	IMode	Канал распада	Вероятность
			распада [13], (%)
π^0	1	$\pi^0 \to 2\gamma$	98.798
	2	$\pi^0 \to e^+ e^- \gamma$	1.198
	1	$\eta \to 2\gamma$	39.31
η	2	$\eta \to 3\pi^0, \pi^0 \to 2\gamma$	31.4
	3	$\eta \to \pi^+ \pi^- \pi^0, \pi^0 \to 2\gamma$	22.457
	4	$\eta \to \pi^+ \pi^- \gamma$	4.6
	1	$\eta' \to 2\gamma$	2.1
η'	2	$\eta' \to \pi^+ \pi^- \eta, \eta \to 2\gamma$	17.532
	3	$\eta' \to \pi^+ \pi^- \eta, \eta \to 3\pi^0, \pi^0 \to 2\gamma$	14.004
	4	$\eta' \to \pi^+ \pi^- \eta, \eta \to \pi^+ \pi^- \pi^0, \pi^0 \to 2\gamma$	10.016
	5	$\eta' \to \pi^+ \pi^- \eta, \eta \to \pi^+ \pi^- \gamma$	2.0516
	6	$\eta' \to 2\pi^0 \eta, \eta \to 2\gamma, \pi^0 \to 2\gamma$	7.943
	7	$\eta' \to 2\pi^0 \eta, \eta \to 3\pi^0, \pi^0 \to 2\gamma$	6.3445
	8	$\eta' \to 2\pi^0 \eta, \eta \to \pi^+ \pi^- \pi^0, \pi^0 \to 2\gamma$	4.5375
	9	$\eta' \to 2\pi^0 \eta, \eta \to \pi^+ \pi^- \gamma, \pi^0 \to 2\gamma$	0.9294
	10	$\eta' \to \rho^0 \gamma, \rho^0 \to \pi^+ \pi^-$	29.4
η_c	1	$\eta_c \to K_S K^+ \pi^- + \text{c.c.}$	2.33
	2	$\eta_c \to 2\gamma$	0.024
η_b	1	$\eta_b \to 2\gamma$	-

После набора нужной статистики вычисляется и печатается полное сечение двухфотонного процесса с учётом радиационных поправок.

Параметры генератора событий перечислены в таблице 3. Используемые в генераторе массы и ширины частиц и резонансов соответствуют [13]. Рекомендуемые значения параметров Rmax, Rmin, Kmin приведены в скобках. Для моделирования событий без регистрации рассеянных электронов параметры Q1Smin, Q2Smin и IRad должны быть равны нулю. Моделирование радиационных поправок (IRad=1) выполняется только в режиме с однократным мечением.

Включенные в генератор моды распадов резонансов приведены в таблице 4. Используемые модели распадов описаны в работе [6]. Если IMode=0, распад мезона не моделируется.

6 Пример моделирования процесса $e^+e^- \rightarrow e^+e^-\pi^0$

Таблица 5. Параметры моделирования, используемые для расчёта распределений, показанных на рис. 6–13.

Параметр	Значение	Комментарий
$\mathbf{E}\mathbf{b}$	5.29	энергия пучка (ГэВ)
\mathbf{IR}	1	мезон: π^0
IMode	1	мода распада: $\pi^0 \to 2\gamma$
KVMDM	1	используется фактор МВД (ур. (9))
Itag	1	регистрируется конечный позитрон
IRad	1	моделируются радиационные поправки
Rmax	0.1	максимальная энергия излученного в на-
		чальном состоянии фотона
		в единицах E_b
\mathbf{Rmin}	10^{-4}	минимальная энергия излученного в на-
		чальном состоянии фотона в единицах E_b
Kmin	0.001	минимальная энергия излученного в конеч-
		ном состоянии фотона (ГэВ)
Q1Smin	0	Q^2_{min} для e^- (Гэ B^2)
Q1Smax	1.5	Q^2_{max} для $e^-~(\Gamma$ э $\mathrm{B}^2)$
$\mathbf{Q2Smin}$	1.5	Q^2_{min} для e^+ (Гэ $\mathrm{B}^2)$
Q2Smax	9	Q^2_{max} для e^+ (ГэВ ²)

Рис. 6. Сечение $e^+e^- \rightarrow e^+e^-\pi^0$ как функция предела на Q_1^2 .

Рис. 7. Энергетический спектр регистрируемых электронов в процессе $e^+e^- \rightarrow e^+e^-\pi^0$, полученный без моделирования радиационных поправок (левый график) и с их моделированием (правый график).

В этом разделе представлен ряд распределений, полученных в моделировании процесса $e^+e^- \rightarrow e^+e^- + \pi^0$, $(\pi^0 \rightarrow 2\gamma)$ с помощью генератора GGRESRC. Использованные в моделировании параметры генератора перечислены в таблице 5. При этих параметрах 57% событий не содержат дополнительных фотонов, 22% событий содержат дополнительный фотон в начальном состоянии, 28% событий – в конечном состоянии, 6% событий – как в начальном, так и в конечном состоянии. Сечение процесса равно σ =0.99 пб, средняя величина поправки δ =-0.6%.

Расчётное сечение в зависимости от ограничения на Q_1^2 (значения остальных параметров те же, что в таблице 5), показано на рис. 6. При $Q_{1max}^2 \approx 1.5 \text{ GeV}^2$ сечение достигает асимптотического значения.

Энергетический спектр регистрируемых электронов с включенным и выключенным моделированием радиационных поправок показан на рис. 7. Видно, что излучение дополнительных фотонов заметно меняет форму этого спектра.

Рис. 8. Энергетический спектр фотонов от распада $\pi^0 \to 2\gamma$ в процессе $e^+e^- \to e^+e^-\pi^0$. Расчёт без моделирования радиационных поправок (левый график) и с их моделированием (правый график).

Рис. 9. Моделирование процесса $e^+e^- \rightarrow e^+e^-\pi^0$. Энергетический спектр фотонов, излученных в начальном состоянии (левый график) и фотонов, излученных в конечном состоянии (правый график).

На рис. 8 показаны энергетические спектры фотонов от распада $\pi^0 \rightarrow 2\gamma$ в процессе $e^+e^- \rightarrow e^+e^-\pi^0$. Энергетические спектры фотонов, излученных электроном в начальном и конечном состоянии, представлены на рис. 9.

Распределения по полярному углу регистрируемых электронов показаны на рис. 10. Видно, что при $E_b = 5.29$ ГэВ обрезание $Q_{min}^2 = 1.5$ GeV² отвечает минимальному углу рассеяния около 13°, что согласуется с оценкой для малых углов рассеяния $\theta \approx Q/(E_b \cdot E')^{1/2}$, где энергия рассеянного электрона $E' \approx E_b$.

Распределение по полярному углу излученных в конечном состоянии фотонов показано на рис. 11. Так как фотон излучается в основном по направлению движения регистрируемого электрона, его угловое распределение очень близко к угловому распределению электрона.

На рис. 12 показаны распределения по полярному углу фотонов из распада $\pi^0 \rightarrow 2\gamma$. Видно, что фотоны имеют широкое распределение, которое становится более равномерным при учёте радиационных поправок.

Рис. 10. Распределение по полярному углу регистрируемых электронов в процессе $e^+e^- \rightarrow e^+e^-\pi^0$. Левый график получен без моделирования радиационных поправок, правый график – с их моделированием.

Рис. 11. Моделирование процесса $e^+e^- \rightarrow e^+e^-\pi^0$. Распределение по полярному углу излученных в конечном состоянии фотонов.

Рис. 12. Распределение по полярному углу фотонов из распада $\pi^0 \to 2\gamma$ в процессе $e^+e^- \to e^+e^-\pi^0$. Левый график получен без моделирования радиационных поправок, правый график – с их моделированием.

На рис. 13 показано распределение по недостающей массе в процессе $e^+e^- \to e^+e^- + \pi^0.$ Недостающая масса вычислялась как

Рис. 13. Моделирование процесса $e^+e^- \rightarrow e^+e^-\pi^0$. Распределение по недостающей массе в режиме с регистрацией рассеянного электрона.

 $\sqrt{(p_1 + p_2 - k - p'_2)^2}$, т.е. в предположении, что регистрируются только электрон и два фотона от распада π^0 . Узкий пик около нулевой массы содержит события (57% от полного числа событий) без излучения дополнительных фотонов. Видно, что излучение фотонов приводит к существенному увеличению ширины распределения по недостающей массе.

7 Программные компоненты

7.1 Общие блоки

COMMON /GGRSTA/Sum, Es, Sum1, Sum2, Fm, Fm1, NOBR, Nact, Ngt *Назначение:* набор статистики моделирования.

Real*8	используется для вычисления полного сечения
Real*8	используется для вычисления ошибки сечения
Real*8	используется для вычисления среднего формфактора
Real*8	используется для вычисления среднего фактора,
	учитывающего радиационную поправку
Real*8	максимальный вес события
Real*8	максимальный вес события в моделировании
	излучения в конечном состоянии
Integer*4	число вызовов генератора
	Real*8 Real*8 Real*8 Real*8 Real*8 Real*8 Integer*4

Nact Integer*4 число сгенерированных событий Ngt Integer*4 число событий с весом большим Fmax (см. /GGRPAR/)

COMMON /GGRPAR/Eb,Rmas,Rwid,Rg,Rm,Fmax,Rmax,Rmin,t1imin,t1imax, t2imin,t2imax,Kmin,Fmax1,IR,IMode,KVMDM,ITag,IRad

Назначение: параметры моделирования.

Eb	Real*8	энергия пучка (ГэВ)
Rmas	Real*8	масса мезона (ГэВ)
Rwid	Real*8	полная ширина мезона (ГэВ)
Rg	Real*8	двухфотонная ширина мезона (кэВ)
Rm	Real*8	масса резонанса в данном событии (ГэВ)
Fmax	Real*8	ожидаемый максимальный вес события
Rmax	Real*8	максимальная энергия излученного в начальном
		состоянии фотона в единицах Eb
Rmin	Real*8	минимальная энергия излученного в начальном
		состоянии фотона в единицах Еb
t1imin	Real*8	минимальное значение t_1 (ГэВ ²)
t1imax	Real*8	максимальное значение t_1 (ГэВ ²)
t2imin	Real*8	минимальное значение t_2 (ГэВ ²)
t2imax	Real*8	максимальное значение t_2 (ГэВ ²)
Kmin	Real*8	минимальная энергия излученного в конечном
		состоянии фотона (ГэВ)
Fmax1	Real*8	оценка максимального веса события при
		моделировании излучения в конечном состоянии
IR	Integer*4	тип мезона
IMode	Integer*4	мода распада мезона
KVMDM	Integer*4	модель формфактора
ITag	Integer*4	регистрируемая частица
IRad	Integer*4	ключ для включения расчёта радиационных
		поправок

COMMON /GGRCON/Alpha,PI,EM,mPi0,mPi,mEta,mEtap,mKs,mKc,mRho, mJpsi,mUps,BrPi0(2),BrEta(4),BrEtaPrim(4),BrRho,BrTot *Назначение:* константы.

Alpha	Real*8	постоянная тонкой структуры (1/137.03604)
Pi	Real*8	π (3.14159265)
Em	Real*8	масса электрона (0.00051099891 ГэВ)
mPiO	Real*8	масса π^0 (0.1349766 ГэВ)
mPi	Real*8	масса π^{\pm} (0.13957018 ГэВ)

mEta	Real*8	масса η (0.547853 ГэВ)
mEtap	Real*8	масса η' (0.95766 ГэВ)
mKs	Real*8	масса K_S (0.497614 ГэВ)
mKc	Real*8	масса K^{\pm} (0.493677 ГэВ)
mRho	Real*8	масса $\rho^0 (0.77549 \ \Gamma \Rightarrow B)$
mJpsi	Real*8	масса J/ψ (3.096916 ГэВ)
mUps	Real*8	масса Υ (9.4603 ГэВ)
BrPiO(2)	Real*8	вероятности распада π^0
BrEta(4)	Real*8	вероятности распада η
BrEtaPrim(4)	Real*8	вероятности распада η'
BrRho	Real*8	вероятность распада $\rho^0 \to \pi^+ \pi^-$
BrTot	Real*8	полная вероятность цепочки распадов

COMMON /GGREV/pPart(4,25),mPart(25),Type(25),Mother(25),Npart *Назначение:* параметры частиц события (до 25 частиц).

pPart(1-3,i)	Real*8	импульс і-й частицы (ГэВ)
pPart(4,i)	Real*8	энергия і-й частицы (ГэВ)
mPart(i)	Integer*4	масса і-й частицы (ГэВ)
Type(i)	Integer*4	тип і-й частицы
Mother(i)	Integer*4	индекс родителя і-й частицы в /GGREV/
Npart	Integer*4	полное число частиц в /GGREV/

В общем блоке /GGREV/: 1-я и 2-я частицы – рассеянные электроны, 3-я частица – рождённый резонанс, 4-я и т.д. частицы – излученный в начальном состоянии фотон (если есть), излученный в конечном состоянии фотон (если есть), продукты распада резонанса.

COMMON /GGRPOL/SETS(7330), SETPOL(7330)

Назначение: поправка на поляризацию вакуума.

SETS Real*8 квадрат передачи импульса (ГэВ²) SETPOL Real*8 величина поправки на поляризацию вакуума Общие блоки для внутреннего использования: /GGRARIP/, /GGRFUC/.

7.2 Подпрограммы генератора

GGRESRC	головная подпрограмма
GGRDEC2G	моделирование распада резонанса на 2γ
GGRESEND	печать результатов моделирования

- GGRESINI инициализация
- GGRETCD моделирование распадов η_c
- GGRETD моделирование распадов η
- GGRET1D моделирование распадов η'
- GGRET1D1 моделирование распадов $\eta' \to \pi^+ \pi^- \eta$ и $\eta' \to \pi^0 \pi^0 \eta$

GGRET1D2 моделирование распада $\eta'
ightarrow
ho^0 \gamma$

- GGRFSR моделирование излучения в конечном состоянии
- GGRFVP заполнение общего блока /GGRPOL/
- GGRINV моделирование инвариантов t_2, t_1, s_1, s_2
- GGRLMOM вычисление лабораторных импульсов конечных электронов и мезона
- GGRLOR преобразование Лоренца
- GGRPIOD моделирование распадов π^0
- GGRPIOD1 моделирование распада $\pi^0 \rightarrow e^+ e^- \gamma$
- GGRPREV печать одного события
- GGRRNDM оболочка для генератора псевдо-случайных чисел
- **GGRSPC3** моделирование трёхчастичного фазового объёма

7.3 Функции с двойной точностью

- GGRPOLAR вычисление поправки на поляризацию вакуума
- GGRFU функция, используемая подпрограммой GGRFSR

 ${\tt GGRFVMDM}$ вычисление формфактора в модели векторной доминантности

7.4 Библиотечные подпрограммы

В генераторе используются следующие функции библиотеки программ CERN:

- **RANLUX** генератор псевдо-случайных чисел, равномерно распределённых в интервале (0,1);
- DZEROX вычисление нулей вещественной функции f(x) в заданном интервале [a, b].

8 Заключение

Разработан генератор GGRESRC для моделирования двухфотонного процесса $e^+e^- \rightarrow e^+e^-R$, где R — псевдоскалярный мезон. Генератор позволяет эффективно моделировать двухфотонные события в режиме

с однократным мечением, когда один из конечных электронов рассеивается на большой угол и может быть зарегистрирован. В этом режиме в генератор включено моделирование радиационных поправок – излучение дополнительных фотонов в начальном и конечном состояниях.

Генератор используется для моделирования экспериментов с детектором BABAR по измерению фотон-мезонных переходных формфакторов (см, например, работы [14, 15]) и для моделирования двухфотонных экспериментов с детектором КЕДР на коллайдере ВЭПП-4М.

Работа частично поддержана Грантом президента РФ для научных школ НШ-6943.2010.2.

Список литературы

- V. M. Budnev, I. F. Ginzburg, G. V. Meledin, V. G. Serbo, Phys. Rept. 15, 181 (1975).
- [2] M. Poppe, Int. J. Mod. Phys. A 1, 545 (1986).
- [3] Е.Бюклинг, К.Каянти. Кинематика элементарных частиц. Мир. Москва 1975.
- [4] S. J. Brodsky, T. Kinoshita, H. Terazawa, Phys. Rev. D 4 (1971) 1532.
- [5] G. A. Schuler, Comput. Phys. Commun. **108**, 279 (1998).
- [6] В.А.Таюрский, Препринт ИЯФ 2001-61. Новосибирск 2001.
- M. Defrise, S. Ong, J. Silva, C. Carimalo, Phys. Rev. D 23, 663 (1981);
 W. L. van Neerven, J. A. M. Vermaseren, Nucl. Phys. B 238, 73 (1984).
- [8] S. Ong, P. Kessler, Phys. Rev. D 38, 2280 (1988).
- [9] S. Ong, C. Carimalo, P. Kessler, Phys. Lett. B **142**, 429 (1984).
- [10] Ф. В Игнатов. Диссертация канд. ф.-м. наук, ИЯФ им. Г.И. Будкера, 2008 г.
- [11] TWOGAM, The Two-Photon Monte Carlo Simulation Program, written by D. M. Coffman (не опубликовано).
- [12] J. Gronberg *et al.* [CLEO Collaboration], Phys. Rev. D 57, 33 (1998).
- [13] Particle Data Group, Phys. Lett. B 667, 1 (2008).
- [14] B. Aubert *et al.* [BABAR Collaboration], Phys. Rev. D 80, 052002 (2009).
- [15] J. P. Lees *et al.* [BABAR Collaboration], Phys. Rev. D 81, 052010 (2010).

Содержание

1	Введение	3
2	Ворновское сечение	
3	Радиационная поправка 3.1 Моделирование излучения в начальном состоянии 3.2 Моделирование излучения в конечном состоянии	6 9 10
4	Сравнение с другими генераторами	11
5	Параметры генератора	12
6	Б Пример моделирования процесса $e^+e^- o e^+e^-\pi^0$	
7	Программные компоненты 7.1 Общие блоки .	18 18 20 21 21
8	Заключение	21
C	писок литературы	22

В.П. Дружинин, Л.А. Кардапольцев, В.А. Таюрский

Генератор событий двухфотонного процесса $e^+e^- \rightarrow e^+e^-R \; (J^{PC}=0^{-+})$ с учетом радиационных поправок в режиме с однократным мечением

V.P. Druzhinin, L.A. Kardopoltsev, V.A. Tayursky

The event generator for the two-photon process $e^+e^- \rightarrow e^+e^-R \ (J^{PC} = 0^{-+})$ with account of radiative corrections in the single-tag mode

ИЯФ 2010-30

Ответственный за выпуск А.В. Васильев Работа поступила 18.09.2010 г. Сдано в набор 13.10.2010 г. Подписано в печать 18.10.2010 г. Формат бумаги 60×90 1/16 Объем 1.5 печ.л., 1.2 уч.-изд.л. Тираж 125 экз. Бесплатно. Заказ № 30 Обработано на РС и отпечатано на ротапринте ИЯФ им. Г.И. Будкера СО РАН Новосибирск, 630090, пр. академика Лаврентьева, 11.