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Abstract

In this paper we study an increase in the antiproton beam
momentum spread due to finite betatron emittance of the beam.
This effect is specific for the spectromentic experiments with
internal targets in ion storage rings with electron cooling.
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1 Introduction

Without additional perturbations, the electron cooling of ion beams
stops when the temperature of the ion beam reaches the temperature
of the cooling electron beam. If m is the mass of the electron and
M is the mass of the ion, the corresponding momentum spreads in
the ion beam become

√
m/M times smaller than that in the electron

beam. Generally, this enables the spectrometric experiments with ex-
tremely high energy resolutions (e.g. in Ref.[1]). In such cases, even
small perturbations increasing the beam energy spread may limit the
experiment performance.

In this paper we discuss one of such effects which is specific for
spectrometric experiments with internal targets in ion storage rings
with electron cooling. Ionizing the target atoms, the ions gradually
lose their energies thus, leaving the beam. For the particle with the
energy E = γMc2, γ = 1/

√
1− (v/c)2, the average rate of this energy

loss reads
dE

dt
= −mc2 4πZAtAr2

ec
2

vΠ
ln

Emax

I
. (1)

Here, tA is the thickness of the target, ZA is the atomic number of the
target material, re = e2/mc2 is the electron classical radius, Π is the
closed orbit perimeter, Emax ' 2mγ2v2, I is the ionization potential
of the target atoms. If the beam is cooled, this deceleration will not
result in the particle losses provided that the power of the cooling force
(vF ) exceeds the power of the ionization energy losses given in Eq.(1).
Since the force due to electron cooling vanishes when the ion velocity
is equal to the average velocity of the electron beam (v0), the equation

vF (∆E) = mc2 4πZAtAr2
ec

2

vΠ
ln

Emax

I
(2)
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defines the equilibrium energy of the ion due to the balance between
the cooling and ionization energy losses. Here, ∆E = E − E0, where
E0 = γ0Mc2 and γ0 = 1/

√
1− (v0/c)2. Generally, due to a decrease

in the value of the cooling force with an increase in the value of ∆E
Eq.(2) has two roots (two fixed points in ∆E). The vicinity near the
fixed point at the decreasing slope of the curve F (∆E) corresponds to
stable solutions. During the cooling, the ions are collected near energy
corresponding to this fixed point. The root of Eq.(2) on the increasing
slope of the curve F (∆E) corresponds to unstable solutions and define
the momentum aperture of the ring. As is known, for a given particle
in the beam the power of the electron cooling force depends both on
∆E and on the amplitudes of its betatron oscillations. For this reason,
the equilibrium energies defined by Eq.(2) are different for the particles
with different amplitudes of betatron oscillations. So that in the ring
with electron cooling the balance between the cooling power and the
power of the ionization energy losses increases the energy spread of the
beam thus, limiting the achievable monochromaticity of the beam. In
general, such a possibility was mentioned in Ref.[1].

In this paper we study this increase in the beam energy spread for a
simplest case, when a coasting antiproton beam interacts with a target
consisting of H2 molecules (ZA = 2).

2 The equilibrium energy

For the sake of simplicity we calculate the roots of Eq.(2) assuming
that cooling electron are spiralling along the guiding magnetic field of
the cooling device with the Larmour velocity spread vL and that the
cooling force can be calculated using a simple expression, which was
suggested e.g. in Ref.[2]:

F =
4nee

4

m

u
(
u2 + v2

eff

)3/2
ln

(
1 +

ρmax

ρmin + ρL

)
. (3)

Here, all values are calculated in the beam rest frame system, u is the
ion velocity, veff is the effective velocity spread of the electron Larmour
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circles, ρmax is the maximum impact parameter for collisions of an ion
with the electrons:

ρmax = min
(

lu

γv
,

u

ωe

)
,

l is the length of the cooling region, ωe =
√

4πnee2/m is the plasma
frequency of the electron beam, ρmin = e2/mu2 and ρL = vL/ωL is
the (rms) Larmour radius in the electron beam, m is the mass of the
electron.

Systematic variations of the particle energy due to the cooling force
are obtained averaging the power vF‖ over the periods of the particle
betatron oscillations. Taking that the dispersion function in the cooling
section is equal to zero and neglecting the variations of the betatron
functions of the ring along the cooling section we write

x =
√

Jxβx cosφx, θx =
px

p0
= −

√
Jx

βx
sinφx, θ‖ =

1
(v/c)2

∆E

E0
, (4)

z =
√

Jzβz cosφz, θz =
pz

p0
= −

√
Jz

βz
sinφz.

Here, x and z stand for the horizontal and for the vertical planes re-
spectively. Then, the average variation of the particle energy due to
the cooling force in Eq.(3) reads

d∆E

dt
= −4nee

4

m

l

Π
vu‖

∫ 2π

0

dφxdφz

(2π)2

ln
(

1 +
ρmax

ρmin + ρL

)

(
u2 + v2

eff

)3/2
. (5)

In terms of the values in the laboratory system we substitute in this
equation ne → ne/γ and

u2 + v2
eff = v2

(
a2 + γ2

[
Jx cos2 φx

βx
+

Jz cos2 φz

βz

]
+ θ2

‖

)
. (6)
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Then, we rewrite Eq.(2) in the following form

d∆E

dt
= −mc2 8πtAr2

ec
2

vΠ
ln

Emax

I
(1 + Q) = 0, (7)

where

Q = − nel

2πtA ln
(

Emax

I

)θ‖ (8)

×
∫ 2π

0

dφxdφz

(2π)2

ln
(

1 +
ρmax

ρmin + ρL

)

(
a2 + γ2

[
Jx cos2 φx

βx
+

Jz cos2 φz

βz

]
+ θ2

‖

)3/2
.

Solutions to Eq.(7) define in the space θ‖, Jx, Jz a surface(
θ‖

)
st

= θ‖(Jx, Jz). Since the amplitudes of betatron oscillations in
the beam (∝ √

Jx,z) are distributed within some range, this will in-
crease the beam momentum spread by the amount which depends on
the betatron emittances of the beam. Generally, the value of the power
of the cooling force decrease with increases in the amplitudes of beta-
tron oscillations of particles. Hence, this additional momentum spread
is lower the lower are betatron beam emittances.

3 Numerical examples

Usually Eq.(7) cannot be solved analytically. In order to evaluate the
described additional momentum spread of the ion beam we solved this
equation numerically assuming the beam and the target parameters
which are specific for the internal target experiments in the antiproton
ring HESR (see. e.g. in Ref.[3]). The desired collision monochromatic-
ity in these experiments is of about 100 keV. For simplicity, in our
numerical calculations we assumed Jx = Jz = J and in the cooling
section βx = βz = β. The longitudinal temperature of the electrons for
these calculations was taken as mv2

eff = e2n
1/3
e . Remaining necessary

parameters were taken from the Table 1. Inspecting dependencies to
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Table 1: The beam and the target parameters used for numerical cal-
culations

Kinetic energy range 0.8–14.5 GeV
Perimeter 424.7 m
Betatron tunes ' 10
Length of the cooling region 30 m
β-function in the cooling region (βc) 60 m
Number of antiprotons 1010 − 1011

Betatron emittances (experiment) 0.001–0.1 mmmrad
Momentum spread 0.002–0.02 %
Target (H2-jet) up to 1016 1/[cm2]
Maximum luminosity 2×1032 1/[cm2s]

1E-3 0,01 0,1

0,1

1

10

Q

-∆p/p0 [%]

Figure 1: Dependence of the factor Q in Eq.(8) on −∆p/p. From top to
bottom Jx = Jz = J : 0.001 mmmrad, 0.01 mmmrad and 0.1 mmmrad,
kinetic energy 14.5 GeV, ne = 109 1/cm3.

Q(J, θ‖) (Fig.1) we find out that for a taken electron beam density of
ne = 109 1/cm3 the roots of the Eq.(7) (Q(J,−θ‖) = 1) corresponding
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the stable fixed point occur in the region below
∣∣θ‖

∣∣ = 0.001% for the
beam with emittance only slightly exceeding 0.01 mmmrad. On the
contrary, for particles with the amplitudes of betatron oscillations in
the range J =0.01–0.1 mmmrad the equilibrium values of energy varies
in the range corresponding to

3× 10−6 < θ‖ < 1× 10−4.

Moreover, at the upper end of this range the momentum aperture of the
ring shrinks dramatically. Inspecting dependencies ∆Est(J) (Fig.2), we
see that for taken target thickness, the antiproton beam parameters
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Figure 2: Dependence of the equilibrium energy of an antiproton on
the amplitude of its betatron oscillations (J). Kinetic energy is 14.5
GeV, upper curve ne = 109 1/cm3, lower curve ne = 1010 1/cm3.

and ne = 109 1/cm3 the requirement ∆Est ≤ 100 keV holds only for
betatron amplitudes corresponding to J = 0.02 mmmrad. Taking this
value as the beam border in its phase space of the betatron oscillations
and corresponding to 2σ, we find that in such a case the required colli-
sion monochromaticity will be achieved for the beam with the betatron
emittances of 0.005 mmmrad. The lower curve in Fig.2 shows that in
the same conditions the collision monochromaticity ∆Est ≤ 100 keV is
achieved for the 10 times dense electron beam (ne = 1010 1/cm3).
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Figure 3: Dependence of the factor Q in Eq.(8) on −∆p/p. Kinetic
energy of antiprotons is 14.5 GeV, J = 0.1 mmmrad, ne = 2.66× 1010

1/cm3. Upper solid curve: electron density is uniform within
√

Jβc

(electron beam current is about 24 A), lower solid curve: the current of
the electron beam is Ie =1 A, its radius is 0.05 cm, ne(r) is a Gaussian
function, open circles: Ie = 1 A, but ne is uniformly distributed within
r ≤ 0.05 cm.

4 Electron beam compression

For a given betatron emittance (ε0) of the antiproton beam the gen-
eration of so dense electron beam with a uniform density inside the
radius e.g.

√
ε0βc can be limited at high electron energies by effects of

the total electron beam current. If, for example, for ne = 1010 1/cm3,
ε0 = 0.1 mmmrad and βc = 60 m the current of the electron beam is
evaluated as 9 A. The required current of the electron beam can be
reduced compressing the electron before it will arrive at the cooling re-
gion. In this case, the radius of the electron beam is reduced to achieve
an acceptable beam current for a given value of its density. Generally,
such a reduction in the beam radius decreases the achievable values of
the average power of the cooling force thus, increasing the antiproton
beam momentum spread (see e.g. in Fig. 3). Comparing the lower
solid line and open circles in Fig. 3, we find that for a given electron
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beam radius such a reduction in the power of the cooling force does
not strongly depends on the shape of ne(r).

As is seen from Fig.4, for the beam emittances up to 0.1 mmmrad
the collision energy spread will be below 100 keV, if the electron beam
with the current of 1 A is compressed till the radius of 0.05 cm (lower
curve in Fig.4). A twice wider electron beam with the sane current will
enable same collision monochromaticity for a twice lower antiproton
beam emittance.
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Figure 4: Dependence of the equilibrium energy of an antiproton on
the amplitude of its betatron oscillations (J). Kinetic energy is 14.5
GeV, Ie = 1 A, upper curve: electron beam radius is 0.1 cm, lower
curve: 0.05 cm.

5 Conclusion

The discussed dependence of the equilibrium energy of the antipro-
tons on the amplitudes of their betatron oscillations in the storage ring
with electron cooling may substantially limit the collision energy mono-
chromaticity which can be achieved in such a ring during experiments
with internal targets. The limitation occurs, if the desired operation
mode demands the beam with a rather large transverse emittances (e.g.
0.1 mmmrad in our examples). With taken beam and target parame-
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ters, an extension of the operation region for such experiments on the
beam emittances of 0.1 mmmrad demands a 10 times lower target
thickness (e.g. tA = 1015 1/cm2), or a 10 times dense cooling electron
beam. In the first case, the collision luminosity will drop 10 times.
In the second case, the desired electron beam density can be achieved
using e.g. the electron beam compression. In the last case, the re-
quired compression ratio should provide sufficient both the power of
the cooling force and the lifetime of the beam in the desired operation
mode.
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