НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЕ УЧРЕЖДЕНИЕ ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им Г.И. Будкера СО РАН
В.Ф. Гурко, В.Н. Ещенко, А.Н. Квашнин, А.Д. Хильченко
Система управления и контроля комплекса «Жидкая литиевая линза»
ИЯФ 2002-56
Новосибирск
2002

Введение

Система управления комплекса «Жидкая литиевая линза» состоит из двух слабо связанных подсистем: управление системой питания линзы и управление литиевым контуром. Подсистема управления литиевым контуром разрешает работу источника питания линзы только в случае полной готовности линзы (литий полностью расплавлен и установлено необходимое давление в контуре).

Рис. 1. Комплекс «Жидкая литиевая линза»
На рис. 1 показана схема комплекса. В его состав входят: импульсный трансформатор (1), в центр которого вставлена сама линза;

корзина системы управления литиевым контуром (3);
электромагнитный насос (4);
система поддержания давления в контуре (5);
система нагрева литиевого контура (6), в которую входят нагревате-

- высоковольтный импульсный источник питания (7) в состав которого входят зарядное устройство, основанное на тиристорном инверключ, коммутирующий батарею на нагрузку; корзина системы управления источником (8); - компьютер, управляющий всем комплексом (9).

Цилиндрическая линза (рис.1) представляет собой тонкостенный ($\Delta=1$ мм) титановый цилиндр диаметром 2 cm , заполненный жидким литием, по которому пропускается импульс тока длительностью 300 мс с амплитудой до 1 МА. Чтобы избежать обжатия литиевого стержня импульсным магнитным полем и отрыва его от титановой оболочки в системе должно поддерживаться статическое давление 300-500 атм. Частота следования импульсов 1-3 Гц. Выделяемая в литии мощность $20-40$ кВт отводится из линзы путем прокачки жидкого лития по замкнутому контуру, включающему в себя насос и теплообменник. Температура жидкого лития в системе не должна превышать $250^{\circ} \mathrm{C}$.

Линза запитывается мегаамперными импульсами тока через со-

 му тиристорных вентилей разряжается конденсаторная батарея емкостью 2.4 мФ, заряжаемая до напряжения 6 кВ специальным зарядным устройством мощностью 100 кВт.

Управление и контроль системой питания литиевой линзы
На рис. 2 изображена упрощенная схема управления системой питания линзы.

- устройства блокировок и сигнализации - УБС; - аналоговых входных формирователей - АВФ; драйверов, обеспечивающих согласование упра ки с сильноточными приборами и устройствами;

Рис. 2. Упрощенная схема управления системой питания линзы
Для питания литиевой линзы используется мощный высоковольтный импульсный источник, который размещен в электротехническом шкафу производства фирмы SHROFF и управляется оператором через компьютер. Для функционирования этого источника требуется контроль следующих сигналов:

12 логических сигналов (двери, вода, воздух, фазы А, В, С силового питания, 3 напряжения внутреннего источника питания, автоземлители, РМБ, сильноточные контакторы);

- 6 термодатчиков;

2 кнопки (ON и OFF) управления подачей силового питания в шкаф;

- 3 напряжения и 1 токовый сигнал в цепях импульсного источника.

Управление источником сводится к следующему:
подъём/опускание автоземлителей;
управление тиристорными ключами инвертора источника;
управление системой электронной защиты инвертора источника;
связь с управляющим компьютером;
индикация режимов работы.

Рис. 3. Схема контроллера инвертора
Схема КИ показана на рис.3. Контроллер имеет 8 аналоговых входов, подключенных к АЦП, 2 дискретных входа (Enable и Reset Protection), 2 выхода на волоконную оптику и 5 электрических выходных дискретных каналов. Один из аналоговых входов подключен кроме АЦП ещё и к аналоговому компаратору и используется для контроля мгновенного значения тока выпрямителя (Ir), четыре канала АЦП измеряют напряжения в контрольных точках системы питания, три оставшиеся канала не используются. Оптические выходы используются для управления ключами инвертора и электронной защиты, а электрические выходы управляют светодиодами индикации на панели управления. Кроме того, КИ имеет двунаправленный интерфейс для связи через волоконную оптику с управляющим компьютером. Контролер выполняет две функции - формирование управляющих сигналов и обеспечение контроля рабочего режима инвертора.

Мощность передаваемая инвертором в нагрузку обратно пропорциональна периоду управляющих импульсов, которые формируются внутренним 16 -ти разрядным таймером микроконтроллера AT90S8535. Применение такого таймера позволяет изменять период работы инвертора с шагом 8 мкс и апертурной дрожью не более 125 нс (частота тактового генератора микроконтроллера 8 МГц), что обеспечивает устойчивую работу инвертора в диапазоне требуемых мощностей.

Значение периода инвертора задается из управляющего компьютера. Команды начала и завершения работы зарядного устройства также поступают из управляющего компьютера. КИ выдаст управляющие инвертором импульсы только при наличии сигнала Enable от УБС, иначе команда начала работы будет проигнорирована.

Для безопасной работы импульсного источника и предотвращения возникновения внештатных ситуаций в управляющей системе предусмотрен контроль следующих параметров:

Напряжение сетевого выпрямителя U_{r}. Задаются минимальное $\mathrm{U}_{\mathrm{r} . \text { min }}$ и максимальное $\mathrm{U}_{\mathrm{r} . \text { max }}$ значения напряжения выпрямителя так, чтобы в этом интервале была возможность прецизионной стабилизации напряжения накопителя и не возникало опасности выхода из строя элементов зарядного устройства из-за перенапряжения. При выходе значения U_{r} за допустимые пределы инвертор останавливается. При возвращении U_{r} в интервал допустимых значений микроконтроллер
 ды "Start" с консоли оператора.

Ток сетевого выпрямителя I_{r}. Задается максимальное значение тока выпрямителя $\mathrm{I}_{\mathrm{r} . \text { max }}$. Превышение этого значения означает одновременное отпирание ключей обоих плеч инвертора, что является аварийной ситуацией. При выходе I_{r} за пределы максимального значения инвертор принудительно останавливается электронной системой защиты. Возобновление работы становится возможным только после прихода сигнала Reset Protection, инициируемого оператором.

Напряжение на емкости в системе электронной защиты инвертора $\mathrm{U}_{\mathrm{prt}}$. Система электронной защиты сработает надежно только в том случае, если емкость $\mathrm{C}_{\mathrm{prt}}$ заряжена до необходимого напряжения $\mathrm{U}_{\mathrm{prt} \text {.min }}$. Поэтому работа инвертора должна быть заблокирована пока напряжение $\mathrm{U}_{\text {prt }}<\mathrm{U}_{\text {prt.min. }}$.

Напряжение на накопительной емкости U_{c}. Напряжение на накопительной емкости не должно превышать максимального рабочего для данной емкости напряжения $U_{c . \max }$, иначе может произойти пробой изоляции с последующим выбросом запасенной энергии (взрыв). Для предотвращения этого система аппаратных защит блокирует работу инвертора в случае, если $U_{c}>U_{\text {c. max }}$.

Ток заряда накопительной емкости I_{c}. Если I_{c} превышает значение $\mathrm{I}_{\text {c.max }}$, заданное оператором, инвертор останавливается. При возврате этого тока в допустимые пределы инвертор возобновляет работу

Сигналы $U_{r}, U_{\mathrm{prt}}, \mathrm{U}_{\mathrm{c}}$ и I_{c} измеряются встроенным в микроконтрол--егәdәш и иипедцчгиф йояодфип кэцоньдәягош 'ШПV wiqнвdદed-0I dәг -еdәшо игоэном ен винәжеdgоцо вгா КДәцоячшшоя КшәпоньгяедцК вәцон тора. Установки рабочих диапазонов приходят из управляющего ком-
 не превышает 300 мкс. Ток выпрямителя I_{r} сравнивается компаратором микроконтроллера с заданным максимальным значением.

При сбое в работе силовой электроники микроконтроллер выдаёт сигнал запуска системе электронной защиты. Время реакции на сигнал

 безопасной работы зарядного устройства.

Кроме вышеперечисленного, зарядное устройство может быть заблокировано сигналом от УБС. Любое срабатывание системы защит индицируется на локальной панели управления световым сигналом.

Устройство блокировок и сигнализации

 11 каналов УР и 6 входных каналов АЦП. Входные каналы АЦП используются для измерения сигналов с термодатчиков, входной регистр контролирует состояния концевиков и кнопок управления, 6 выходных каналов УР используются для индикации температур светодиодами на

 обмена с КИ (посылая ей Reset и Enable). Кроме того, в УБС преду-каким-либо быстро меняющимся сигналом I_{g}

Контроль эксплуатационных условий зарядного устройства и ге-

 сигнал "Air"). При отсутствии подачи воздуха работа системы запрещается.
 Контроль температур рабочих элементов зарядного устройства (шесть аналоговых сигнала "Т1"..."Т6"). При перегреве элементов работа системы запрещается.

Состояние дверей (двоичный сигнал "Doors"). Двери шкафа зарядного устройства блокируются механически при помощи РМБ. Работа системы запрещается если хотя бы одна дверь не закрыта.

Наличие фаз А, В и С трёхфазного силового питания.
Наличие внутренних напряжений питания управляющей корзины
и напряжения питания драйверов инвертора.
Состояние РМБ. РМБ имеет два концевика: полностью открыто (двоичный сигнал "РМБ open") и полностью закрыто (двоичный сигнал "РМБ closed"). В полностью открытом состоянии включается световая индикация, разрешающая работу персонала с высоковольтными элементами системы, автоземлители заблокированы в опущенном состоянии, контакторы заблокированы в разомкнутом состоянии, двери шкафа механически разблокированы. В полностью закрытом состоянии механически блокируются двери шкафа и поднимаются автоземлители. На плату КИ подаётся сигнал сброса блокировок длительностью 1 с, после чего разрешается подача 3-фазной сети в шкаф. Диаграмма включения УБС приведена на рис. 5.

Состояние автоземлителей (двоичный сигнал "AG"). Автоземлители блокируют накопительную емкость через балластное сопротивле-
 запирания РМБ подачей напряжения на обмотку электромагнита автоземлителей. Подъем автоземлителей возможен только при замкнутом
 Состояние контакторов (двоичный сигнал "Power"). Контакторы осуществляют подачу напряжения ~ 380 В на сетевой выпрямитель. Их включение возможно не раньше чем через 1 с после поднятия автоземлителей. До этого оно аппаратно запрещено и инициируется при нажатии оператором кнопки ON на панели управления. Для предотвращения заряда фильтрующего конденсатора до удвоенного сетевого напряжения в момент включения контакторов предусмотрено двухступенчатое
 контактор, который через балластные сопротивления заряжает фильтрующую емкость до сетевого напряжения; через 4 сек после этого
 го срабатывания контакторов УБС подает сигнал разрешения работы для КИ. Временные диаграммы включения контакторов приведены на рис. 5.
УБС[..]
\sum_{i}^{∞}
2

Рис. 5. Диаграмма включения УБС

состав системы входят контроллеры двух типов: PLC - для стабилизации температурного режима и статического давления литиевого контура и PLC-S - для управления электромагнитным насосом.

Рис. 6. Структурная схема PLC
Структурная схема PLC показана на рис. 6. В его состав входят:

- 18-ти разрядный интегрирующий АЦП MAX132 фирмы Maxim с
 щий в режиме циклического опроса текущих значения входных сигналов;

8 -ми канальный управляющий регистр (УР), построенный на основе твердотельных реле с оптронной гальванической развязкой HSSR8060, используемый для управления исполнительными устройствами в режиме "включить/выключить";

- гальванически изолированный 8 -ми канальный сборщик двоичных состояний (СДС), используемый для контроля текущего состояния цепей защиты;
- микроконтроллер AT90S2313 фирмы Atmel, управляющий работой всех узлов РLC по заданному алгоритму, в соответствии с командами, поступающими из управляющего компьютера по последовательной линии связи RS-232.

С помощью двух модулей PLC обеспечивается стабилизация температуры. Статическое давление поддерживается третьим PLC.

На рис. 7 приведена структурная схема PLC-S, предназначенного для управления фазоимпульсным регулятором источника питания электромагнитного насоса. PLC-S построен на базе микроконтроллера AT90S8535 фирмы Atmel. Этот микроконтроллер имеет в своем соста-

ве 8 -ми канальный 10 -ти разрядный АЦП, с помощью которого производится измерение тока электромагнитного насоса, и аналоговый

 плату формирователей, построенных на основе полевых транзисторов IRFR7309. Формирователи обеспечивают амплитуду импульсов запуска до 1 A , а также гальваническую развязку силовых цепей от схемы управления. Контроль за наличием всех трех фаз питающей сети и воды в контуре охлаждения тиристоров источника питания электромагнитного насоса производится с помощью гальванически изолированного 8 -ми канального СДС.

Для управления литиевым контуром используется индустриальный компьютер MIC-2000 фирмы Advantech. Подключение всех PLC к управляющему компьютеру производится через связной коммуникационный контроллер (LCC), построенный на основе микроконтроллеров AT90S8515 и AT90S2313. Его структурная схема приведена на рис. 8 .
 компьютера отправляет ему таблицу с текущими значениями точек контроля и сигналов управления. При поступлении от компьютера команды на изменение параметров рабочего режима, LCC передает информацию в PLC. Обмен данными между LCC и управляющим компьютером осуществляется при помощи последовательной оптоволоконной линии связи.

нагревателей и используются только для контроля температуры в
заданных точках Работа системы выглядит следуюшим образом:

- из управляющего компьютера в микроконтроллер PLC загружаются опорные значения температур, до которых необходимо разогреть соответствующий участок литиевого тракта;
- по команде оператора при помощи УР и тиристоров включаются нагреватели активных каналов;

с помощью термопар и АЦП контролируется температура лития в заданных точках тракта;

при достижении предельного значения температуры в какой-либо локальной точке литиевого тракта микроконтроллер выключает связанный с этой точкой нагреватель;

- процесс дискретного управления включением/выключением нагревателей продолжается до выравнивания температур во всех контролируемых точках на заданном уровне;

подавление помех производится с помощью цифрового фильтра, встроенного в алгоритм работы микроконтроллера.

В рабочем режиме основными тепловыделяющими элементами литиевого контура становятся сама линза и электромагнитный насос. Тепловые потери в этих элементах превосходят уровень, необходимый для поддержания лития в жидком состоянии. Поэтому, при переходе системы в рабочий режим нагреватели выключаются, а стабилизация температуры лития на заданном уровне производится за счет управления потоком воздуха в теплообменнике.

 водится с помощью датчика давления и исполнительного устройства, состоящего из реверсивного двигателя постоянного тока, редуктора с большим коэффициентом замедления и гидроцилиндра.

Работа системы управления статическим давлением лития начинается после прогрева литиевого контура перед включением электромагнитного насоса. В связи с тем, что литий имеет большой коэффициент объемного расширения, при нагреве и переходе через точку плавления локальные давления в различных участках контура будут меняться. Для того чтобы не создавать дополнительных нагрузок на элементы литиевого контура, исходное давление в нем необходимо понизить до

циркулирующего потока лития в системе.

При переходе к штатному режиму работы давление в системе увеличивается вплоть до величины порядка 300 атм для того, чтобы исключить возможность отрыва лития от стенок линзы магнитным полем тока линзы.

Работа контура регулирования статического давления лития достаточно проста. Текущее давление в контуре преобразуется датчиком давления в электрический сигнал, значение которого измеряется анало-
 двигателем исполнительного устройства. Направление вращения двигателя прямо связано с направлением изменения давления в систе-

 Основываясь на текущем значении статического давления в сис-

 ва и длительность интервала его включения. Результирующее давление в системе контролируется АЦП. При необходимости существенного изменения давления в системе, процесс его перестройки осуществляется несколькими последовательными итерациями.

 Для его питания используется понижающий трансформатор с выпрямителем во вторичной обмотке. Напряжение питания требуемой полярности на двигатель подается через тиристорные ключи.

С верхней и нижней крайними точками положения гидроцилиндра связаны два концевых переключателя, ограничивающих диапазон его перемещения. Наряду с концевыми переключателями в исполнительном устройстве имеется и контактный датчик среднего положения гидроцилиндра. Состояние всех указанных переключателей и датчика
 выполнении всех операций, связанных с изменением статического давления лития в системе.

Система управления и контроля
Циркуляция лития в линзе и литиевом контуре обеспечивается с
 зависит от величины тока источника питания. Ток источника, построенного по классической схеме с понижающим трехфазным трансформатором и фазоимпульсной тиристорной схемой во вторичной цепи трансформатора, определяется временем задержки импульсов запуска тиристоров относительно точки перехода напряжения соответствующей фазы через нуль.

Принцип работы схемы управления потоком лития в линзе доста-
 лер измеряет при помощи встроенного АЦП текущее значение тока и
 для обеспечения заданного тока задержкой.

Схема управления током электромагнитного насоса имеет встроенные средства аварийной защиты. При отсутствии воды в контуре охлаждения тиристоров или пропадании любой из трех фаз микроконтроллер блокирует выдачу импульсов запуска тиристорам.

системы контроля и управления литиевым контуром

 и контроля контуров стабилизации температуры и давления, а также стойку источника питания электромагнитного насоса.

MIC-2000, помимо штатного периферийного оборудования (монитора, клавиатуры, диска и т.д.), оснащен платой, обеспечивающей согласование сигналов последовательных портов COM1 и COM2 компьютера с оптоволоконными линиями связи систем управления и контроля литиевого контура и источника питания линзы

Использование в системе управления последовательных оптоволоконных линий связи позволяет исключить гальваническую связь управляющего компьютера с силовым оборудованием, что, несомненно, повышает надежность работы всей системы в целом.

Обе стойки выполнены в конструктиве «ВИШНЯ». Они содержат -онцинцешоdцмәгє винециц иминҺоцэи) Ічцнәюәгє әчяогио әчняоноо әэя

 торы и тиристорные ключи системы прогрева литиевого контура, сетевые автоматы и реле блокировок), а также модули PLC и PLC-S с собственным источником питания.

Программное обеспечение системы управления и контроля комплекса "Литиевая линза"

Программное обеспечение комплекса можно разбить на две груп-

программное обеспечение микроконтроллеров, обеспечивающее
автономное управление отдельными подсистемами комплекса в режиме реального времени;

программа «панель оператора», с помощью которой задаются режимы работы комплекса и которая отображает на мониторе управляю'ІчшәцЈй хемноц хІчнчгоd

 95. Применение указанной операционной системы позволяет с помо-
 зрения задач управления, объектами - импульсным источником питания линзы и литиевым контуром. Каждым из объектов управляет отдельный процесс (задача), а синхронизация этих процессов осуществляется с помощью стандартных средств Windows 95.

Программное обеспечение

 Іяєниц винециш ехинноцวи олонэqьイиши выше, состоит из двух частей - УБС и КИ. Каждая из них управляется
 питания задаются с помощью «панели оператора».

Программа микроконтроллера УБС фактически следит только за температурами контролируемых точек и при выходе их за допустимые пределы, заданные пользователем, запрещает работу источника

Рис. 9 "Панель оператора" импульсного источника питания линзы
Программа микроконтроллера КИ управляет формированием импульсов запуска для инвертора и системы электронной защиты, следит за контролируемыми напряжениями и токами. Кроме того, она осуществляет обмен данными с консолью оператора

Программа «панель оператора» предоставляет пользователю инструментарий управления и контроля источником. Интуитивный интерфейс (рис. 9) делает её легко осваиваемой и простой в использовании.

Программа отображает контролируемые величины «стрелочными индикаторами». Диапазоны допустимых значений, которые задаются пользователем, отображаются на шкалах секторами зеленого цвета. При выходе какой-либо величины за допустимые пределы, соответствующая шкала окрашивается в красный цвет. Ползунковым регулятором «F inv» пользователь задаёт частоту работы инвертора. Состояние регистра статуса КИ отображается в нижней левой части экрана, справа внизу расположены иконки «Пуск/Стоп», «Запись настроек», «Настройка СОМ-порта» и «Выход».

Для установки допустимых диапазонов какой-либо из контролируемых величин необходимо дважды щелкнуть мышью по соответст-

Рис. 11. "Панель оператора" литиевого контура

Рис. 13. Задание температуры и давления лития

Рис. 12. Задание параметров электромагнитного насоса

