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ABSTRACT

Specific properties of the longitudinal current fluctua-
tions in a coasting ion beam, moving in a storage ring
with the beam cooling, are reviewed in the paper. As
the cooling changes both the debunching mechanism
and the dielectric constant of the beam, it modifies the
longitudinal Schottky noise spectra of both low-inten-
sity and high-intensity beams. At the statistical equi-
librium the longitudinal beam spectra are described by
the universal formula, where contributes the beam di-
electric constant only. This enables one to create the
fitting code for the diagnostic of the beam parameters
as well as its interaction with surrounding electrodes
in storage rings with the beam cooling.
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I. INTRODUCTION

The measurement of Schottky noise spectra provides the power-
ful diagnostic tool for (especially coasting) beams in storage rings
[1]. Since it is based on the analysis of the noise signals, which the
beam induces in pickup electrodes, this is non-distructive method
and results of the measurements generally reflects the mutual pro-
cesses in the beam. Nevertheless the interpretation of such measure-
ments is simple only for low-intensity uncooled beams, when the
noise spectrum coincides with the revolution frequency distribution
function in the beam and the power with the beam number of
particles N.

For high-intensity or cooled beams the noise spectra can be dis-
torted by either collective effects or by the cooling and accompany-
ing diffusion. Thus the interpretation of experimental data becomes
more complicated and generally needs some fitting code though can
yield much more information concerning beam parameters and its
interaction with surroundings. Referring to ion beams in storage
rings with electron cooling this was first pointed out in Refs [2, 3].

In this paper we shall review some phenomena, which can be
observed in the longitudinal Schottky spectra in storage ring with
electron cooling .as well as some technical details, which can be
useful for the models of fitting.



2. THE LONGITUDINAL SCHOTTKY NOISE
OF THE NORMAL BEAM

Let us discuss first the basic properties of the current noise in
the uncooled, coasting beam. Below we shall call such a beam as a
normal one. The linear microscopic density in the coasting beam has
the form

N
p(0, )= ) 8(0—8a(2)), (2.1)

=]

where @ is the azimuth and 0,(f) is its instantaneous value for a-th
particle, N is number of particles in the beam, §(&) is the periodic
d-function. Using:

a5 ]

5 (9) = exp(ind) : 9 9
W= (22)

e =— 00

one can get for Fourier harmonic of p:

p0.f= Y 10 ‘3;"':"”"*3', (2.3)
i
N
pn(t)= ) exp(—inda(t)). (2.4)
|

=

Due to the thermal motion of particles both p and p.(¢{) are random
functions of the time with average values:

(py=N,. (pa(®))=0, .ns0. 1 (2.5)

The r.m.s. value of |pa|®, which can be measured from pickup elec-
trodes .is connected with two-time correlation function:

Ku'flsfi}:<pn”l]‘ P;{iﬂ},\/‘v [26}
Generally, the calculation of K, (fi,f2) can be very complicated
problem. Therefore, some simplifying assumptions become necessary

to find out ‘this function in particular cases. For instance, for the
beam of low intensity one can neglect the interaction of particles
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anql, hence, write: \
Ba (1) =@ (Apa) £+ Pa= w5 I+ 0h Apa t+ @u (2.7)

W, s
p“, n=4% 2—!:1, ﬁﬂa=.ﬂa—Ps,

whH=

where a is the momentum compaction factor of the ring. The substi-

tution of these formulae into eq. (2.6) aiter the averaging over ini-
tial phases g, yields: <

N
Ka(m)={ ) exp(—inwst)), t=ti—1l. (2.8)
o=l

Introducting the momentum distribution function:

N

o (Ap) = (# Y 6(Ap—Apa) ) (2.9)

de=

one can rewrite eq. (2.8) in the form:

Le_s]

Ki(t)=N | dAp fo(Ap) exp(—ina(Ap) ). (2.10)

- 0D

The spectrum analyser measures the Fourier amplitudes of K.(t):

Ka(w)= | dv K.(7) exp(ioT). (2.11)

=)

For the normal beam of the low intensity this coincides with the -
beam frequency distribution function:

Ku(Awa) =2aN | dAp fo(Ap) 8 (Aw.—nwb Ap) (2.12)

— O

Avp=w—nw,.

Generally, K.(Aw,) is centered around nw; and has the width pro-

portional to the revolution irequency spread in the beam nAw. The
power of the noise spectrum (2.12) is ’



fa. ] r

W.=K,.(0)= S dAw,

2n

Kn (Awa) =N . (2.13)

As can be seen, for the low-intensity beam the correlator K.
depends only on the difference of times 1=1{, —1s, which means that
K, describes the stationary noise. Thus, during the measurements
K, can be stored.

For beams with the interaction between particles the Schottky
noise becomes stationary in the statistical equilibrium, but interac-
tion generally distortes the shape of the noise spectra from that de-
scribed by eq. (2.12). For typical measurements, when harmonic
numbers n are not too high, one may expect that such interaction
can’ be associated with fields, which the beam induces in surroun-
ding electrodes. Then for the Fourier amplitudes:

on (@) = E dip. (1)
0

the calculations based on the linearized Vlasov’s equations yield
(see Refs [2, 4] for details):

Wy o
Pr [[!jj

gnl@)

pn (@) = (2.14)

Here p."(®) is the Fourier harmonic of p.(f) calculated without the .

interaction between particles,

bu- u ]

2 y _
Ea (A0 =T} 21 S dAp Ofe/B3p o Ime=0 (2.15)
g Aw,— nwj Ap

— o

is the dielectric constant of the beam, which by means of the disper-
sion equation

“gn(Awy) =0 (2.16) ~

yields eigen-frequencies of longitudinal coherent oscillations in the
beam, and

Qf =n? TELRND (—iZu/n). (2.17)

is the squared longitudinal coherent tune shift, ze is the charge of
ions, 11 is the perimeter of the orbit. These equations imply that the
interaction of the beam with surrounding electrodes is described by
the longitudinal broad band impedance: '

Eq(0) = — *""*’-'l“;“’" Znpa(0) . (2.18)

where E.(®) are harmonics of the longitudinal electric field induced
by the beam. Using eq. (2.14) we can rewrite eq. (2.18) in the form

i0) ¢ 4 i !
LadAue) gt Teakeds. O s o). (2.19)
En t'ﬁm.r.'J lI ;

-~

Enlw)=

which demonstrates that collective reaction of the beam reduces
external fields in &, (Aw,) times.
From eq. (2.14) one can find out for K.(w) (see in Ref. [4]):

¢ A gy
Ko (Awg) = S

T2 |En{i‘imu] | &

(2.20)

K. (Awn) =2aN S dAp fo(Ap) 8(Awn—nwoAp) .

[ )

Equation (2.20) describes so-called Schottky noise suppression in
high-intensity beams and was calculated in many papers (see, for
instance, in Refs [2, 4, 5, 6]). It is caused by the propagation of
coherent oscillations-along the beam and the efiect is as stronger as
longer is the life time of such oscillations. The usage oi eq. (2.20)
to fit Schottky spectra measured for normal beams enables one to
get the number of particles in the beam, its frequency spread Aw,
both parts of Z,=Z;+Z7 and, in principle, the momentum distribu-
tion function. :

Some general properties of the noise spectra for intense beams
can be seen directly from eq. (2.20). It may have sharp peaks in
the close vicinity of roots of eq. (2.16) provided decrements ol cohe-
rent oscillations are small enough. In fiact, this can be realized in
two cases:

1) if coherent oscillations are stable and the beam is cold enough;

2) if coherent oscillations can be unstable and the beam is tuned
close enough to threshold of the instability.

Since the impedance Z, generally has both real and imaginary

parts, even for symmetrical distribution functions, the spectrum
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K.(Aw,) can be asymmetrical in Aw,. and such asymmetry in-
creases, if the beam intensity tends to any thresholds of coherent
instabilities.

For the low and medium energy ion storage ring one may
expect the dominant contribution into the impedance Z, irom
Coulomb forces:

{_izﬁjn)zL{(ln{bfa}—i—lfﬁ,- n<no=Ro/a, (2.21)

vy’ L (no/n®), nny,

where b and a are respectively vacuum chamber and beam radii,
Ro=11/2n. With this impedance and for Gaussian momentum distri-
bution in the beam ~

!

2n o

o (Ap) = exp(—Ap®/207) (2.22)

eq. (2.20) can be written in the form (e=¢'+ie")

Kl = 22 S0 (2.23)

L Ao les(Aon)|?’

[=Q%n’Aw’, Av=w}o.

For cold beams ({3>1) one has in eq. (2.23) |e”| < |&’| for all Aw,
except those, which satisfy the dispersion equation '

en(Awn) =1 —Q%/Awi=0.
Then, using the substitution

: A
. T L Bl

one can replace eq. (2.23) by

Ko (Awn) =(N./2) [ 8 (Aow— Q.) + 6 (Awa+ Q)] (2.24)
Ne=n(6/p)* 222 (n/—iZs),
e w,

describing the double-peak spectrum. The power of this spectrum
obviously is N, and thus is proportional to the longitudinal tempera-
ture of the beam [2]. Let us also note that the power of the spec-
trum (2.23) can be calculated exactly using the dispersion relation
for the beam response function:

% (Awn) =1—1/en(A0n) =y +ix",

¥ (dws) =PV { et L, | (2.25)

T w — Awg

— 30

where PV denotes the calculation of the principal value of the
integral. The result is [4]

W= N/(148) = N/(L + N/N.). (2.26)

Let us discuss now some properties of Schottky noise for beams
near the thresholds of coherent instabilities [4]. In. this region
en(Aw,) can be expanded in powers of (AN/N), AN=Nu— NN
(N is the number of particles at the threshold). For the broad
band impedance in the first approximation one has

ex(Aws) =(AN/N) +i e (Awy) . (2.27)

The substitution of this expression into eq. (2.20) yields

Kn(mg:% 8[ex(Awa)] | dAp fo(Ap) 8(Aws—nwhAp). (2.28)

== 0

As the position of peaks now is determined by the roots of virtually
unstable solutions of eg. (2.16)

en (Aw,) =0, (2.29)

in contrast with eq. (2.24), the shape ol the spectra (2.28) can be
very asymmetric in respect to the point Aw,=0, provided
Re (Z,) 0. In particular, it can consist even of one narrow peak.
The power of the spectrum (2.28) is

Wo=—"2__ 5 |9¢”/d0s | " | dbp fo(Ap) 6(Awk—nwtAp), (2.30)
I —N/Na & ol

where B marks solutions of eq. (2.29). For instance, for the nega-
tive mass instability (dwe/dp<<0) in a Gaussian beam one has

/2

nAw

Nrﬁ_—“Nf, ﬂ-mn=0, iﬂﬁ”;’ﬁmhh:

and, hence



Wa=N/(1—N/NJ) (2.31)

the noise power increases, when N tends to the threshold value. We
have to note that the same increase in the noise power can take
place below transition energy of the ring, if the impedance has
large inductive component.

Since for high harmonic numbers Z, decreases, asymptotically
one has Q?—»const, L,—0, and therefore there will be no signal
suppression (W,—N) for harmonic numbers above

n=np =22 /A0’ , (2:32)

which corresponds to Debye shilding radius ro==Ro /np.

3. THE LONGITUDINAL SCHOTTKY NOISE OF COOLED BEAM

[f the beam is cooled by any mechanism, one more parafme-
ter —the cooling decrement A can aifect the shape of its noise spec-
ira. As from A and nAe one can construct the dimensionless para-
meter

qx{nﬂmfl}z (3.1)

ihe different behaviour for spectra might be expected, depending on
whether g is small or large. The physical reasons are the following.

In the coasting beam any distortion of phase density can dilute
only due to the relative motion of particles along the beam caused
by their energy deviations. i the cooling is weak (¢>>1), particles
leave and enter the sample of azimuthal size 1/n faster then cooling
starts to work. Hence, in this region of parameters one may expect
small distortion of the noise spectra by cooling.

[i the cooling is strong (g<1) after the cooling time 1/A par-
ticles change their azimuthal position by A®,= Awg/h and then stop.
In this region the dilution becomes possible only due to associated
with cooling random kicks (or collisions), which provide the neces-
sary deviations in the particle energies. Once these kicks are ran-
dom, one has

A9, b A, niMEe=Aeddh,

where the solid line means the averaging over coilisions. Taking
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into account that the average frequency of kicks is A, one can get
that the distortion in phases will dilute due to weak diffusion of
particles

Aw?®

'

d 2
= (M) (3.2)
Generally, such dilution mechanism is specific for that in dense
media (see in Rei. [8]), when collision irequency is high. It ob-
viously can be realized, if collisions occur more frequently then the
thermal motion produces new fluctuations. For the Schottky band
near the frequency ne; this requires A>nAw.

The influence of the described phenomenon on the equilibrium

Schottky spectra can be calculated using the Fokker — Planck equa-
tion [7]: : -

of 9 fe _ 9 T, d of
at TIP) o8 TG, ) aAp . OAp [mﬂ 2 aﬂ.p]' <o

To calculate values referring to the beam equilibrium state, we can
adopt that botfi A and the diffusion coefficient d are constants, while
fo(Ap) is Gaussian distribution (2.22) with ¢’=d/2i. Before
making the particular calculations we have to remind that actually
eq.' (3.3) is not usual kinetic equation because entering there [unc-
tion f(Ap, ©, t) is not the conventional distribution function, but is
only its fluctuational part averaged over collisions. Thus, its avera-
ge value over the beam fluctuations is (f(Ap, 9, f)) =0, while the
second momenta are related to the beam noise characteristics [4]. In
fact, f(Ap, 0, t) must be calculated from the microscopic. equation

Iy, i g e :
I+ ao(p) 2L +2eE (0.0 T =— 2 ((—rdp+d (1) ),

Ap dAp

where d(t) is the random function describing collisions. Therefore,
the use of eq. (3.3) is based on the assumption that the correlation
time of external noise is much shorter then that of beam fluctua-
tions.

The simple calculations with eq. (3.3) yield for harmonics of
phase density p.(@w) the same equation as eq. (2.14) (see in
Refs [4, 7] for details)

0s (©) =p1 (Awn ) /en (Aw) ,

11




but with

Al
gn(amﬂ)=1+ceﬂz‘i :F} _mj“ , (3.4)

which is quite different from that of eq. (2.15). Therefore, we can
use for spectra eq. (2.20) after the calculation of KY(Aw,) for
cooled, low-intensity beam. The last can be done directly using
eqs (2.4), (2.6):

N
KO ={ Y exp(—in[®a(t+1)—a(®)]) ) (3.5)
= :
and equations of the particle motion:

g == —"}@u"}_D f:.ﬂ .: g =00 ﬁ'pﬂ: '&41:(:)@ ’ (36)

where collisions are described by the stationary white noise D(t):

DO D) =D 8(t—t). D*=20Aw?,

D{f[) ...D(fgk+|} Zﬂ, {3?]

D (t)) ... D(ty) =, (D(t)) D(td) ...(D(tan—1) D{t2))
P

and P means the summation over all combinations of couples. The
simple calculations yield [4]

; il :
KO (1) =exp{—a¥ (a1eh} Y exp {522 (
a=1

_e_”ﬂ}} B

W (x) = —2(l— e +(1—e ) /2,

or, using eq. (2.9),

K9 (17])=exp|{—g¥ (Al<l)) g dﬂ.pfﬁe}cp{.‘mf}p (1

— o3

i "“"')} . (38)

In the region At>>»1 and, hence, ¥(At) ~Art, this function decays
12

with the time constant

A

(1h0)? > (nAe) ™!

Tn=

in agreement with eq. (3.2).
For the Gaussian distribution function eq. (3.8) can be rewritten
in the form .

© 2N it Gl oo adedd -
ﬁ. n == — 1 F . rg
KB =278 ) 700 a4 i

f==H

The power of this spectrum is the same (W,.=N) as that for the
normal, low-intensity beam, but widths of Schottky bands are much
smaller provided the cooling is strong:

) g :
n A f :QN e Ry 1 % 3.10
G ey woneor g (F9)

The Schottky noise spectrum for. the cooled beam can be ob-
tained by the substitution of egs (3.4): and (3.9) into eq. {-2.20).,As
the comparison of these equations gives

K (Aow) = 2% m {21, (3.11)
Awn 2
one can write K,(Aw,) using only one function — dn(Awa):
2N en— |
1 A n) = ; z . £
Kn(B0s) = imﬂ“{_nmw]2Irm{ : } (3.12)

It is easy to verify that for normal beams with Gaussian momentum
distribution eq. (2.20) coincides with eq. (3.12), which thus gives
the universal representation for Schottky spectra of both normal
and cooled beams. This fact also can be traced by direct calculation
of the asymptotic for e.(Aw,) when g—oo (Refs [4, 7]):

o0

n=1 = ) 4 {_q}t 1 o
s o a o Zﬂ THE P R
= ¢

=1+4t4igt{dsexplisy—gs+g(l—e™)=

0
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=14 +iyt [ dsexplisy—gs+q(1 —(1 —s+5/2+...))} =
) :

o0

X e s AN 0
:1—|—;—|—£ﬂhmns’;5dfexp{i.ﬁmnfﬂmT’df-}, (3.13)
0

y=Awa/h, g>1. :

In some particular cases eq. (3.12) can be simplified. If, for in-
stance, Im{=0 (i. e. ReZ,=0), eq. (3.12) gives for the spectrum
eq. (2.23) as it was calculated in Ref. [2]. Some more usuful re-
presentations for e, can be found in Rel. [4]. ¢

The behaviour of Schottky spectira described by eq. (3.12) for
some particular parameters is shown in Figs 1 —3. It indicates well
pronounced asymmetry in spectra, if 0. Such effect was
recently detected in measurements at TSR (see in Rei. 9).

4. THE LONGITUDINAL COHERENT OSCILLATIONS
OF COASTING BEAM WITH STRONG COOLING

As for g>1 the dielectric constant for cooled beam coincide
with that for normal one, we shall concentrate here on the brief dis-
cussion of properties of longitudinal coherent oscillations for
strongly cooled (g<1) coasting beam. Before making calculations,
let us mention also that with the given Aw and A the comparison of
g with 1 separates coherent oscillations (and, hence, Schottky
bands) by the harmonic number. From this point of view, below we

shall discuss the properties of longitudinal coherent oscillations with
relatively small n:

In] < A/Aw . (4.1)

For g<1 only two first items in r.h.s of eq. (3.4) are important.
Therefore the dispersion equation takes the form

BilA i | — p—anr e L LG (4.2)
(y+iq) (y+ig+1)

It has the roots

; i @l Fy'e
= — g — — —
Yy =% i{ﬁ 4} ,

14

or

Aw,= 41 *—EEI 4 : (4.3)
2 |
e s B | (4.4)
: w ks |
5. =§+qai{"f*”;”“} , (4.5)

X2=(U—A /42 4V, Qi=U+iV.

Using eq. (4.5) one can find out that oscillations will be stable
(6= 0), if
U+(nAa)’=> V*/A°. (4.6)

In particular, this means that the beam cooling does not stabilize
the negative mass instability [7]. Nevertheless, it increases the size
of the stability diagram in the plane (U, V) along the axis V espe-
cially in the region U= 0. It is interesting to note that for fixed
values of ¢ (not necessarily small) the stability diagram asymptoti-
cally (U—o0) follows the parabolic law (4.6). This can be seen
directly from eq. (3.4) by the calculation of e, for the asymptotic
region (Im Aw,=0, Aw,—>o0):

e; (Atng) =1 — Z_f A3 50, g,

or :
TTC U MR
ffffl]—]+2, (V/W) 136"

(VA =2U0n., " Ui

=

In the region g>>1 there can be the situation, when before reaghin_g
the parabolic asymptotic the stability diagram-shrinks in V like it
does that for the normal Gaussian beam. This time the stability
diagram will have the waist as it is shown on Fig. 4. Respectively,
during the storaging it can occur initial deterioration and subsequ-
ent enhancement of beam collective stability, while beam current
increases. Anologous variations in the stability of coherent oscilla-
tions have been observed in experiments at TSR (see in Ref. 9). The
same behaviour of stability diagram was recently obtained in
Rei. [6] using quite different collisional integral.

The threshold current of the beam can be found from the stabi-
fity condition (4.6):

| &
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Nu/Ne=8/24+VE(I+E/4),  E=Z8/qZ. (4.7)

In the region dwo/dp>0 and £> 0 it can significantly exceed the
threshold of negative mass instability N,

Nuw=N.Eoc)*(Z}/Z5) (4.8)

HEyl -

From eq. (4.5) one can see that with strong cooling (g<1)
Schottky bands of intense beam are broad enough Aw=A/2, if the
beam is not close to threshold of a coherent instability. Though, if
the beam intensity is not high (U<A?), or cooling is very strong,
the spectrum will have only one well pronounced peak, which is
centered around Aw.=0 and has the width (see in Ref. [2] and
also in Fig. 1):

5 — (nde)’+U

- (4.9)

The splitting of the spectrum 2Q at high beam intensities (U>>2?)
is proportional to N'/%, while at U~? this scaling changes for (see

eq. 4.4))
Q~\U—2a%4 .

Close behaviour of the splitting recently has been observed at TSR
19].

The behaviour of the spectra close to thresholds of coherent
instabilities has been discussed before.

5. DISCUSSION

The presented results shows that both the spectra and the power
of the Schottky noise of the coasting beam are very sensitive to col-
lective behaviour of the beam. This can be used for fitting of
Schottky noise measurements and recalculation of beam parameters,
parameters of cooling device and beam surroundings. The use of the
universal representation for spectra by eqs (3.12), (3.4) can sim-
plify the fitting.

The sensitivity of Schottky spectra to thresholds of coherent
instabilities can be used to study that, making measurements below

16
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the thresholds. In storage rings with beam cooling the distance to
the threshold can be controlled by manipulation with the cooling
rates.

I am indebted to N. Dikansky, B. Sukhina from INP (Novosi-
birsk) and to E. Jaeschke, M, Grieser, M. Steck from INP— MPI
(Heidelberg) for the stimulating discussions.
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Fig. 1. The Schottky spectra of cooled beam calculated using eq. (3.12) with
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Fig. 3. The same as for Fig. 2 but with =25, {'=9, {"=—05.
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