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ﬁhstract.

Permutation symmetry of fermiaﬁ path integral allows
(while spin degrees of freedom are ignored) to use in ita

simulation any probabilistic algorithm, like Metropolis
one, heat bath, etc.




1., INTRODUCTION. In our recent Letter [1] we have proposed
a way to simulate many-fermion systems, The main problem known
here is that the integrand of any fermionic path iitegral is
not positively defined, and widespread opinion claims (see, €.8.
[2] ) that probabilistic Monte Carlo algorithms fail in this

cage. We try the complex Langevin method [3] which has no ex-—-

plicite restriction of this kind and get & good success,

However, 1atgr on in view of works [4,5], we have realie-
zaﬂl}hat the Langevin method fails in simulation of any integ=-
ral (axf(x), if its integrand has & mode: f(xo) = 0, Xo€a,b .
This is & consequence [5] of the "segregation theorem" [E]Prﬂ-
ved for real X, X,; but a direct numericel experiment shows,
that similation fails as well,; even if one shifts the node
point into the complex plane: X, =» X, +if. Therefore a puzzle
occurs: why our simulation of fermions works well, elthough the
integrand in our path integral has & lot of nodes ?

In this letter we show that our success is & consequence
of the permutation symmetry of our path integral. lkioreover,
while spin degreeg of freedom are ignored, one can reduce the
whole domain of integration to some subdomain, where the inte-
grend remains positive and therefore any probabilistic MNonte
Cerlo algorithm (Metropolis one, heat bath, etc.) can be used.

2. Let us start with the I-fermion path integral in its time-
discretized form:

Xﬁx R B0 S[%' J%L ¥:[ U(x ...xﬁ. n+1,..xn+1,ﬁT}
=1 = (1)

where N is the number of steps AT in eucleadian time T,=AT-N,
xf is e coordinate of [-th particle at time T, =ATn (spatial
subscripts are suppressed) and the link fumction U(x ,x . .;AT)
is the amplitude of L-fermion transition from the point X to
the point x _, during a (small) t;me 1nterval AT, Permadlcal
boundary conditions are imposed xﬂ+1 = x1¢ It is convenient

-0 introduce an effective action defined as

exp{'seff(xn’%lﬂ: ﬂrc)} = U{xnlxn+1 ;AT j (E)
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which in the 1imit At—~0can be estimate as [1]:

S g ;AT) = m{xn+1 AT : e
ert Fnr¥ny34T) = { S i [?(xn} +’f{xn+1)] +

L
4 __%_ Z e [q = exp(= (xf Sl n+“l)(x 1{ ]} (3)
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While the first two terms are & conventional form of the action
for distingulshable particles, the third term arises for identi-
cal particles only, providing a needed symmetry of the link fune
ction U(xn,xnb1,ﬂ ) with respect to permutations of the initial
or final particle coordinates, Since the link Tunction

U(xn,xn+1;ﬂtj ig not positively defined, the integrand in eq.(1)

{ : cannot be considered as a probability weight. However, one may

gimulate & path ensemble, taking instead as a weight funciion
the absolute wvalue of the integrund:

e::cp(-ﬂ}‘ 1—[ U(xn,xnﬂ:ﬂ'f)‘_ - (4)

n=1l

Then any ﬁver&ga can be calculated directly by the formula
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where {x}+ and {1}_ are subsets of the whole path ensemble,
whether the integrand in eq,(1) has positive or negative sign.
This receiﬁt workas well while T, is not large: T AE £ 1, where
AL is order of the energy splitting between the ground state
and excited one: AR ~ K, - B, . In the limit of large To 3> 1/AE
the receipt fails because of strong cuncellations in eq.(5),
but instead one may calouluate :

<07, = X o 2 g (6)
i {x}i {}{}i

¥ .I We claim, that in the limit T. > 1/AD

@or e (7)

The motivation comes from & well-known behaviour of the cor-
relation function

$x(T) (T > oo dexp( -&E-JTuT’J) {(8)
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The same is obviously valid for a sign-sign correlstion of link
functions, while fthe links are separated by |t-T|»1/AE. There-

fore the coordinate distribution at any particular T and the
total sign of the integrand in ec.(1) do not correlate, if a
path "length" in T is large enough: T, 1/4E.

To illustrate this observation we sinulate a system of L

fermions with @ mass m = 1 moving in d-dimensional oscillator

potential
V(x) = x°/2 (9)

using both the Langevin method and Metropolis one. The resulis

given in Table 1 support well the velidity of eq.(7).

3. Now we present a more exciting observation, based on a bit
more subtle but convincing enough to be considered seriously
arguments, Let us treat the quantity ;

: N

S=)" Sepp(Bys® . 414T) (10)
ne1

as a true action of our fermion system., Then the integration
of the Langevin equations

. 25
:;':-ﬂ_‘ B - -'é—"? + T(A] : (11)
*n

is nothing but & procedure of stochastic quantization of our
fermion system. If x are started from the real initial va-
lues, the domain of their evolution is restricted by the con-
dition exp(-S[x]) > O [5] due to the"segregation theorem"
(6] s therefore any link cen never pass through its node and
change its sign, This observation allows us to impose & res-
triction in eq.(1)

U(xn"xnﬂ;&'c} ey for any n (12)

before the simulation., Since the integrand is ever positive
in this case, any probabilistic Monte Carlo algorithm can be
easily applied. In Table 2 we present some results of numeri-
cal simulation under this restriction for the system just
mentioned above (Langevin method is used here). The date well
support the idea, .
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TABLE 1. Mean potential energy <{VD> of I fermions in

d=-dimesional os¢illator potential,

d| L V> W, V> |exect|r| N| algoritim
value used
oulie 1,662 1.561 1,508 1,5 |8.[40| Tangevin
kg 1.569 1.441 1,595 1.5 |8.]40 Metropolis
PR e 4,455 4,200 4,177 4,0 |4.]110 Langevin
[ e 2.076 1.997 1.994 2.0 |4.}10 Langevin
TABLE 2, MNean potential energy <V> of I <fermions

in d-dimensional oscillator potentisl (1link
positivity condition (12) is imposed),

dif % V>  lexact | N 5

value
b JE 1.574 Fwb 10 4,
2 5 2,640 2.5 10 4,
2 4 4,016 4,0 10 4.
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