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CONTACT PROBLEM
FeA.Tselnik

1« The problem of classical mechenica in its cannnicui ver-
sion is to find the trajectories of bodies moving under extermal
forees. The trajsctories are thought of & lines of o certain
cless in Buclidean (Riemannian) three-dimensional space and para-
metrized with a segment of the number axis (time). -

The scheme is related to an experiment via the standard pro-
cedure: space-time points are fixed using rods and clocks (the
reference frame). Measurement results naturally depend not only
on the motion itself but on the reference frame construction as
well, whose suitability is checked up using some standard referen-
ce trajectories (see, for instance, the detailed discussion in
[1]).

To substantiate this prncaduré they often refer to a ty-
pical experiment which, in its turn, greatly relies on the suc=
cesgses of technology. An experiment, however, is not free of a'pri-
ori 3'.-:1e¢5-.§!"l and the estimation of the results of technology consi-
derably depends on its aims.

To break the vicious circle one must consider the applica-
tions of mechanics and ask: what for should I find frajectories?
Moreover, what for should I formulate the concept of space-~time?
To diatinguiah points?

If the trajectories of two bodies A and B intersect
there may occur an interaction unique for the given problem which
will be called a "contact". The nature of the interaction may be

5 According to Einstein, to measure the velocity of light one needs
a theoretical concept of velocity. :
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different, but if the trajectories do not intersect, there is no
contact. The problem is to find out whether the given bodies /A
and 5B will come into contact or not. The task, thus, is to
control, if it is desirable, the occurrence of the contact choo-
sing from the available set of influences 7 a certain F€ 7 ,
go that each time a whole class of contact problema (CP) is sol-
ved, each with its own F . The result of the solution may be
used then to advise somebody the variant of action.

The contact of A and B (denoted hereafter as {HB} is
unique only in that it is finel for the given (P . There may
be other interactions /A and B or of any of them with other
bodies, some of them are used to define F itseif. What happens
when the contact occurs cannot be found whithin the limits of the
given problem, it should be known before the CP is furmulatad;
‘Thus, the bodies may move under electric attraction and the final
contact that is in question (collision) is also an electromagne-
tic (interatomic) iﬁteractian, it is only collision that is consi-
dered as the unique contact mentioned above.

Thus the introduced concept is, in fact, of informational
meaning: there is the contact or there is not. A contact must be
pointwise since it is analogous to the information bit thus dif-
fering from the main canonical version concept of "event™, i.e.
"an instant flash of a small lamp®. The latter presumes some pre=-
vioualy stated metric structure for its very definition.

A CP solution usually implies not a contact simply but a
- contact at a definite moment. This is meaningful if the CP is not
completed - either the bodies A and/or 8 may experience
some chaggnu and the final contact depends on the phase of these
internal processes, or the CP, when solved, is to be included in

a8 more general problem, mechanical or some other. The situation
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may be simulated introducing "multiple contact" that implies more
thas two Bodtey, that is A Lo w SAPECE .

All the other comcepts of mechanics, such as trajectories,
space, time and so on are introduced only for a CP solution. The
very concept of "body" is also used in.a CP only.

The canonic;1 version is supposed to use a reference frame
for a CP solution, i.e. a three-dimensional lattice formed by rods
with clocks at the knots. There has always been a question if the
construction of the reference frame, which is only an intermediate
stage to compare the given motion to some standard one, introduces
into the solution of the problem anything of its own, as a real
physical .object. This would restrict the generality of situations
that could be analysed in mechanics. The question could be answer-
ed inambiguously by comparing one motion %o another directly, withe
out any reference frame.

Let there be besides A, B, (.. dealt with in the given CP
some other bodies used as reference ones. In the simplest case,
using for the time being the concepts of the canonical version,
they may be taken as bodies that move uniformly and rectilinear-
1y with arbitrary velocities in all points of space and moments
of time.

The concept of contact covers reference bodies as well, 1l.e.
their mutual contacts and those with A, 8,(L... . Unlike the
final contact that may result even in the bodies destruction, the-
gse measuring ones must not (in classical mechanics) even disturb
the trajectories, i.e. the removal of any of them leaves others

changed. But just like the final contact these measuring ones
are to be defined in the informational way: for any peir of bodies
it may be always said if there is such a contact or there is not.
5]



The term "body" is used here in the meaning of a "material
point", which implies a little body. However, as it often happens,
the concept of "zero size" may be used without introducing the

general concept of size (e.g. "zero mesure", zero dimension", etce).

In this case it is supposed that the &ncurenca of a mesuring con-
tact is the only information needed to predict the final contact
and that the mesurement does not disturb the motion.

Rereranﬁe bodies are empirically distinguishable one from
another. They may be thought of as provided with numbers. Their
totality forms a set R . Hereafter they will be denoted as X&ﬁ
with indexes. Bodies /A, 8,(.. come into measuring contacts with
a subset of AR . There are also measuring contacts {4 A’L
X€é€ R , that correspond to the final contact 48] .

A CP may be formulated like this: given measuring contacts
A, B... with a subset of R  one must find out whether the
final contact will take place. Naturally, the information presen-
ted 1s supposed to be minimal; exclusion of any measuring contact
makes the result ambiguous.

Since the CP is useful because of the possibility to change
the final contact occurrence, its solution is a form of predic-
tion: thé final contact follows the measuring ones, In other
words, there must be asymmetry in the set of contacts, i.e. the
order {herorda.tter} is necessary. i

Let there exist contacts '8 o5 A SRR i 5 T S
R  has been chosen properly {X X,{ will come either before
or after [X,X;{, or they will be simultaneous giving the doub-
le contact {X. X3 X;} » No order will be introduced if all the

bodies participating in the contacts are different (e.g {x, %5}

Such an order has but a weak relation %o the usual concept
of time. Of course, one may learn it using a clock attached to
the body X, but the only thing it should do is to show the
proper direction of time. It ﬁuulﬂ be enough to mark X; when
the first contact takes place. Then, if X3 comes into con=-
tact with marked X; this will be considered a later contact.
The experiment is supposed to determine only the occurrence of
the bodies' mutual contacts and their order. All the other con- .
cepts introduced for the sclution of a CP are to be expreassed
via these terms.

The set R with its contact scheme (i.e. with a rule that
states what bodies come into contact and in what order) forms
the so-called space of the given CP. In contrast to the canoni-
cal version it is in no way supposed to be given in advance. On
the contrary, one should construct the set R in a way proper
for the given CP.

The concept of the universal space is raiged by the problem
to £ind R  so complete that it is sufficient to construct the
solution of any CP and at the same time has no elements unnecessa-
ry for the solution.

The contact scheme unduces the standard geomatrical.structgre
in R  because it specifies some subsets and their relations.
The structure is examined below. Section 2 is mainly supposed to
visualize the constructions. Here the Buclidean space geometry
is accepted unconditionally. Reference bodies trajectories are
taken as uniform and reﬁéﬁlinear and the scheme of the bodies'
contacts is made up by the intersections of straight lines in
Buclidean space. Basic geometric objects and their relations are

defined by the contact scheme only. Such constructions are called
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"natural”. Section 3 digcusses what rules of mechanics are natu-
ral. To substantiate a proposition in mechanics is o establish
its naturalness, by definition.
Contact acheme in its intermal terms (and the corresponding

/R  geometry) that is not based on any a'priori model is dis-
cussed in the section 4. The section considers the conditions
that the contact scheme is to satisfy so that any CP could be
solved. A proper set of reference bodies is found and so the
use of three-dimensional space and one-dimensional time (home-
omorphic to a segment of the number axis) is substentiated. The
subsets of £3XT  are established that are good enough to rep-

resent the bodies' trajectories. The internal definition of the
subsets 13 also presented,

A == .

2. Let there be a pair of bodies ( A and B ) moving in a
Euclidean space. Let then a referemce body X ( 3 {/‘?Jﬁ’} start
at some moment from A  and reach B ({A)(} -{{BX}) « All the
bodies in A that leave A aimultanea{mly and reach B do
not necessarily arrive there at the same time. For any pair of
such bodies X, and X there must be an order relation:

{BX,} < [3 XJ} or {BXz}{{BX,} or there exists {BX,X&} -
In this special case there is no need to divide distance by time
in order to introduce the concept of "velocity" and to regulate
the magnitudes of velocitiea: the order relation is just a property
of a certain subset of R formulated in terms that express the
occurrence and order of the contacts. The proposition that the
bodies move along straight lines in EgA’T is not significant in
this case, In every such situation one can establish an order,
but generally X; and Xz do not always move the same way. Ne=-
vertheless, it will be always said that X, ig faster than X2
if {B X,} "{{Bz\’;} e This definition is convenient eapeciall_y :
if there exist the fastest body: no matter what the trajectories
may be, starting from /4  simultaneously with other bodies it
reaches /2 sooner than others (absolute extremum). The bodies
for A are chosen by the experimentér: For a CP to be always
solved in R the set must:include the fastest body for each of
the special cases, Indeed, communication between ﬁ and ,B
through other bodies is necessary already for the determination
of the initial state, without which the CP does not exist. One
must be sure that with any influence from .?' upon, say,‘/?
the contact {}4£}} that is in question will not occure before

the measuring contacts that determine the initial

state. On the other hand, the maximal speed cannot be infinite:
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{ﬂx_} and {BX} cannot be simultaneous since then, acwrding.
to the contact ordering rule, there must also be {/?5} which in
fact is only to be found. The fastest bodies will be hereafter
called photons, though not due to their electromsgnetic nature.
They have their own definition in R as top velocity bodies.

At the first glance, it seems that Nature need not take into
account the way an observer chooses bodies for R and may pro=-
vide bodiea faster than photons. But then the observer will not
take them as bodies since the concept of body is used only for a
CP solving. :

For example, let it be not A  that comes into contact
with B  but some /‘!"', which is "very much 1like" /A  (the
so-called "phase" speed that may be infinite). A and A,
are nmever considered to be the same body though for the final
contact results the difference between the same body but at anot-
her point and a quite another bndy may be insignificant. In situa-
tions with such phase velocity it is impossible to affect the fi-
nal contact {ﬂﬂ} by accelerating /4 and so they are of no
interst for mechanics. Thus top velocity is at the basis of the
very idea of moving bﬁdias since one implies the same body at all
phases of the motion. In the canonical version this is as if dis-
guised. Using a reference frame one seems to be sble %o obtain an
instant photography of the whole space, the top velocity being
introduced as an independent experimental result that may turn
out to be wrong. The general examination of the CP shows that this
experiment only reveals the contents of the basic concepts,

The special role of photons in R is used to specify geo-
metrical objects and quantities unequivocally reproduced in the
experiment. As a limiting element the photon is defined in a uni-
que way and its contects overtake sll the others. Photons will be
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denoted by V'’ with indexes.

The main part of many constructions is a double contact con-
cept of the kind of {X,XoX3} . Let a pair of photons V.’ and
g} leave X-; gimul taneously and go toward X; and Xj’
correspondingly ¢ { X, V'Y '} < {X X2X3} ). . Wnen the pho-

tons reach X3 ' and X3 there start backward to A the
“reflected" photons fo and V,gﬂ forming new contacts
(XYR) - (VDY > (VR ] wa (X V)Y
> {X I/S“ , f';?’} > {X,_Vfg"’} . Such photon oscillations go on
up to { X, X3X3)+ Let tnere be 77,5 oscillations between

X, end X,  that started at som® arbitrary moment. The
quantity ]’7;2 corresponds to another quantity 7?,«3 the num-
ber of oscillations between X and Xj 8o’ that {X; V,;nﬂ}
< {){r ]/;;n'ﬂ} and {XJ H{;H;;H? >{X }'{rinﬂ}} . The quantity

oy 4 8 | :
X, szxa.-g:;rm "/T?;_a is introduced, where the limit corres

ponds to approaching { A‘;XLXJ} . Using the canonical version

concepts one can easily calculate:

1-5
:f’fm??’y.:é?_@i. = - o
mnw . T Bad=At o R VERY 4o (0
1+2

ﬂ""f:rzr;; /({:-:1'12‘3

X XXEXJ

where Paﬂ denote Veﬂ/ﬂ, L is light velocity and 3";/( '
and ?é/' are the components of the velocities of the bodies
X 7 and X_:J in the reference frame where ,X; is at rest:
P =0 -
The limit has been defined correctly aince it does not de-
pend either on the beginning of the oscillation count, nor on
the precise time position of the (??,z}tﬁ photon arrival bet-
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ween the ( 77,3)th and the (77,3 +1)-th ones.

If the trajectories are not uniform and rectilinear, but
their coordinates can be presented through left-differentiable
time functions, then the instant velocity velues in the space-
-time point corresponding to the contact {X, Xix‘\é} are to
be used in (1),

Formula (1) can be presented in the four-dimensional form,
which is convenient if one needs to obtain Yy, XX;X& besides
X, XXI.XB (then there is no need to calculate them in different

reference frames):

en U i —\/ {U,;UJ;)E__—:;_

X Bt Ui U +v’ﬁf;.:a"3,;)3#$‘
X, X z
X, ). #%3 €n ‘Eff‘ uﬂ: o L/f_u-'i- tar) -1 (2)

Upe Uye +y (Uit Uai) ™1

where Wai denote the four-dimensional velocities of Xa. .
The formulas obtained correspond to the case when the photon

oscillation process precede {X:Xi)(ij- If one is interested in the

trajectories intervals that follow the common contact, it is ne-
cessary to continue them to the area preceding the contact, to
find X there and to use this value for the whole vicinity of
{X, X;,_X;} « The same welue of bf can be obtained (h.ut
for uniform rectilinear trajectories only) if one starts counting
oscillation number at a moment after {X, ,\"2,‘(3} and goes on up
to =02 , Oscillation numbers are infinite in both cases
though in the first ‘case the duration of the process 1is finife.
Formula (1) préaents the correspondence between B/ values,

obtained by counting oscillation numbers, and /5 as measured
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by means of rods and clocks. But in the first case determination
of :5/ is given in terms expressing only the occurrence and or-
der of the contacts. In other words, it is a natural procedure.

It is meaningful even when there are no metric relations at all

. being a direct experimental procedure.

In the general situation, however, both the possibility of
evaluating numbers 77 and the existénce of limits are not gi-
ven a'priori, bu?u{'r; guaranteed by the proper choce of the con-
tact scheme in R . In the canonical version the limits exist
due to the smoothness of the trajectories that are used in stan-
dard constructions.

Hence, if it is desirable to use this construction (and it
is a basic one), one must choose /R  so that some definite con-
ditions hold for the mutual contacts scheme (see section 4). In
other words, one is to construct a space with sufficient resolu~
tion and continuity in order to solve the CP.

civen o Y,x, the quantity ) ¥x, X§ may be of different
velues corresponding in the reference frame where X,- is at
rest to different directions of the velocity of X2 with Xg
given. Among these values in the canonical version there must
be minimum end maximum (perhaps, infinite) ones. They are reali-
zed when X;, X3 and X_g belong to & straight line in f‘f Xa
and X-j being at the same or at apppaite'sides a3 regards e
1f now, leaving aside any interpretation in E3x T; one imagines
a contact scheme with the semé extremum properties, there arises
a possibility to introduce a linear (vector) space Kf&IXpI)
assosiated with any contact {an;f in naturel terms. It contains
all X’j taking part in {XX,XJ} . Each pair X.,X;E K corres-
ponds to X; =X, +X5, Xz € K . according to the "paralle-

!
logrem rule”: T}X' an/‘(Z:XLXXEXﬂ and 2) among all XE.'
13



satisfying 1), one takes XE with the minimum value an }'/VEXEZ .
@
The element X € K is defined for each X & K and
. !
a real number 9 : UX»: Yx(m € and 2) among &ll (9)()
satisfying 1), one takes @)X with the minimum value of
X b/Xo{ﬂf}l « The element (-).’) opposite to X igs defined
= d is minimum. '
by x:y{-ﬂf P B -
The double contact concept can be generalized for the im-
portant case of two pairs of simple contacts connected by a pho-

ton. If for four bodies )(;, Xz, X; and Xq there exist

{XIXE.} and {Xi X#} , and for some \/ there exists
{XIXI.V}'{{XBX# y’} one may send a photon V! trom X, to

X'3 astarting the counting of oscillation number ?7,2_ at the
f “
same moment and 7731; when V reaches X; and so define

the quantity y . Y X, as the limit for M2/ N34 when

 the contacts {X,X'z} and {X;Xg} are approached.

The multiple contact concept is the basis for apecifying va-
rious _claases of subsets in R, primarily the "spheres". For
the given {YJ;} sphere S (X /X)) with the centre XolXo' con-
sists of all elements coming into contact {X;X; S&Vn},l’p’)j with
the nentre, X. an ‘(2. being equal 1 for each palr X}, X f‘,gfﬂ;f.htl

According to the canonic version concepts 5‘(.1", }X;) con-.
sists of all bodies moving with equal velocities toward Xo
from all directions in the reference frame where Xo is at rest
at the moment of the contact. The sphere "draws up" to { Xo )G}
and then, after the contact, "expands" from it.

Mutual positions of different spheres with the common cen-
tre X.fk;’ is characterized by B’ numbers. The number X X;’- X3
(X € ,S‘, y 1'2&51) is determined for a pair S, (Xo|Xo) end
SZ (Xo1X,) + The et /\  consisting of all spheres with the

L : 14

centre X, ]X,_,I can be defined in & unique way if to use the con-
tact gcheme that is defined by straight lines intersections in

F3xT . chis set can be parametrized with the mumber x, &, Xy
12 & "unit" sphere O, 1is marked in A . The set K(x;;x;):y,s“,_
contains all elements of all spheres making up A .

The extremum relation used above to introduce the algebraic
stmctﬁre into K may also be used to uniformly subdivide S .
For this one takes }] elements of the sphere X,..X:... Xy and
looks for maximum x, Xxmx =?(X;J ff#?’ﬂ; . .m=t....7}
among all the values of ¢ and 777 . The set (X;) is said
to be distributed uniformly in the sphere if y (Xe) is minimum,
i,e. for any other )7  elements ('-’{_;): ?fx,;)-"; ?f/ﬁj'

' A sequence of subdivisions of spheres 5‘& e A as lso0
together with the usual partition of the parameter j a/x' X2
variance intervel is used for the natural definition of thes integ-
ration in J (section 3). '

The concept of bodies with equal velocity vectors though po-

sitioned differently is significant in the canonical version. The

. analogous definition can be obtained in natural terms. Consider

some X} a peir of photons V_, and V.?. ({XM}-{ {M]/zf-{{)(v;})
and a paeir of auxiliary elements X, and Xz ('{V:, }é}{{)(* yﬁf{
{XV’z}, {x%}.{{xz%}{{% Y §)» The element X 1is said to be
wparaileln vo X ( XN X) 1t I{XV, X} <{ZXnXj  ena
XX, ¥xx=1.

Using this construction, one has to congider sufficiently
long time intervals in order to comstruct directly X that is
far from X in the canonical sense. It is possible to avoid
this inconvenience using sequences of the type XN Xy Xz 1 X0 Xnﬂ'j{—
and choosing X, close to ANigs

The similar comstruction fits as the basis of another method

to introduce linear speces K (Xo/X3) -
I5



Straight lines E(XIXV (E{XX'}) analogous to those in
53 are introduced as sets of elements of the type X . similar
to spheres, the lines move with arbitrary transverse velocities
(in the canonical interpretation).

It the bodies /4, B, C... move "freely", i.e. like reference
bodies, then {ABC.,f can be predicted using the intersec-
tion scheme in R  known from the previous construction (it is
assumed that A moves 1ike X  or is kinematically equal to X,
it for any X' the presence or absence of {XX’; brings
gbout the same as for {ﬂX’_f)* |

The influence of fF € 3" on /? ( ~ 1is supposed not te
in:rlue_nca R ) changes its motion so, that /A is no longer
kinematically equivalent to any reference body. One codes }
corresponding to any /  some contact scheme of the type fﬂf'f}

M C R « Having in mind canonical models, it.is worthwhile to
define "chains™ in _R made up of the parts of reference trajec-
tories and constituting a sequence {X,X,} < {/\"} /\ﬁ} <.s D0 every
chain there corresponds a body trajectory kinematically equivalent
to Xk of the K-th link.

The differential of a curve in E;XT is naturally asso-
ciated with the set of uniform and rectilinear trajectories. The
characteristic distinction between a straight line and a curve is
natural, provided, as it is assumed, the basic set of lines cal-
led "straight" was stated in advance and provided with a2 usual in-
terseccion scheme. Each pair of lines intersects at most in a sinéle
point, whereas each pair of points on a curve belongs to a gtraight
line crossing the curve., That is why there exists the natural
straight line approximation for the /? trajectory structure "at
& point". One chooses a sequence ( Xk) ( KeQi: ;3 {ﬂ‘(xﬂ)} .

3{/4.2’,(} ‘<{/-?XK+;}'<{,Q (Xx} and constructs the associated
16
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sequence g X&Xﬁ; the oscillation number count for any K star-

ting after the first contact {ﬁXﬁ} . The limit ﬁXXJKJD

determines the tangent element to the ﬁ trajectory for the
{/?XP} contact.

The natursl construction of an integral curve, i.e. finding
the 1imit of the chain sequences, is based on using oscillation
number as an ai*gu.ment. Let photons oscillate between bodies /4”
/42: ,QB (that move in Eg ) starting at some moment. If ﬂﬂ”l{%ﬂﬂ
it is considered that at this interwval /42 is closer to ﬂ; than

)qg, « When n)ﬂﬂ:f)[still being much more than unity, if the

‘trajectories are close) the concept of closeness becomes local.

At the trajectories intersection points T] numbers are infini-
te, and one is to examine the vicinities changing the starting

and final moments of the photon counting. ﬁz trajectory is said to
bé closer to /41, one than ﬂ_g one, if it is closer everywhe-
re.

The smallnessof two chains at a given interval may be com-
pared by counting the number of links for the given number of mu-
tual oscillations. At any interval the smaller chain has mor: links,
their number being much more than unity.

Chains, a3 a acheme, are sufficient to represent trajectories,
as there alwafrgighchain connecting a.nﬁa.rbitra.ry initial link with
any contact chosen beforehand, the latter coming after the cor-
responding photon contact.-

Any subset of R that is the limit of a chain sequence is,
by definition, thel trajectory of a body in mechanics. The useful-
ness of such a definition will be discussed in section 4. But it
is clear already now that the very possibility to ascribe a defini-

te trajectory to a body pressupposes that the measuring contacts

do not influence the motion.
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3.0ne more set of bodies p {probe bodies) is to be introdu-
ced in order to code J in natural terms. Unlike X’2 bodies
P E f’ react to external influences. In this respect they are
similar to bodies A,B... whose contact is discussed in the
problem. On the other hand, while A4, B... are given, the set

:fj just 1ike R is io be chosen specially for the CP so=
lution. Recommendations for the choice of a proper .5’) suitable
for solving a Iidg enough clasa of (P's is the subject of dyna-
mics (i.e. classification of influences), wherﬁa.a a proper choice
of R 1s the subject of geometry.

Like ﬂ, ' R elements of ﬁ come into measuring contacts
with AR, the whole information about the set J 1is coded by
transition from one contact to another. The probe bodies may be
thought of as noncontacting, as the contacts of the type [Xf’}
(XE€ER, pe ﬁ)) are known and may be used to compare the motion
of A with that of some subset of 2 .

The trajectories A, B.., must be kmown fully as it is they
that predict the final contact of these very bodies, cnn.:’:rary to
this, it is only the local behaviour that is esgsential for ,ﬁf _f":}
since one may compare the motion of, say, /4 with wvarious P'ﬂ:P’:’
pass /) from one to another as in "relay race".

It 1s useful to distinguish the zero influence in 7 with
respect to .?) « It is characterized by tha. kinematic equivalence
of R and ﬁ that is violated if F#¢ O , By a special
empirical procedure with the help of ﬁ .each nonzero £ deter-
mines in R elementary links. For an arbitrary {PX} a:u.ele-
ment X, tangent to P at {p}( } 1is found. After this contact

P and Xp trajectories diverge under the influence of /A

men X' € I(X'Xp} > {PXp), I[pX')> frix}y 1s
I8

chosen. The set r()f") containing all such elements having a

common contact {p F(XU} includes Xj (P d/,Xii’,:: =min[ (X1

The transition Xp “:‘-'"X;.f- locally corresponds to 2 at ({PXP‘,E
{pxof> . |

Since the set R is supposed not to contain unnecessary
elements, each X € A may turn out to be kinematically equive-
lent to A1  in some CP. Hence, for every {XPXPI.} (XP,)S}:FR,

3 {XPX’.-:;}) there must be an element in  tangent to Xp
and )(Ff' . Tt would seem that all transitions of the kind
XP-’X; should be given in order to code _F . This would
be inconvenient as then one would have to include in P all
the bodies "the same as /'7 "y i.e. dynamically equivalent to

/q *. Irt turns out, however, that it is posdsible in natural
terms to reduce f) by one dimension.

Locally A and P trajectories are compared by means |
of element &; kinematically equivalent to the given /? and the
chosen L : Xp  is tangent to A end P at {)@Pﬁf
(the denotation {XPP/‘-?} is meaningful since the contact ﬂ
with P is indirectly fixed through Xp y though it is not
defined by itself). Let there be found for this case the element

X';; : transition ’:{P*Xf; locally corresponds to £ . Ome
has to find the transition X;;-"'){;; s ie@s the influence of F
upon ﬁ from the known influence of / wupon /2 . This
may be done in natural terms not only when P does not differ
from /q , but also when there is a subset in R containing

X; , whose elements may be distinguished naturally. Accord-
ing to 3ec.2 there is such subset in K —sthe gtraight line, i.e.

It is enough to imagine that to predict the trajectory of a very
heavy body one would have to use similar heavy probe bodies
everyshere. This would considerably narrow the application of
mechanics. '
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one-parameter subgroup of 9)(!5 elements from /A fX;. XD,

The choice of ):4, could be explained otherwise as Poi Timas
The given transition XP "XF; is supplemented with an auxiliary
one X’ : 3(prg-{{Xpoy, 3{%;)(‘}{ {%Y{;f . Then )g
1o toma: 305 %%}, I(GXI< D050, s Mypi =0
where 9 is a given number. The process of finding )fg‘ that
determines the /4 motion locally is a natural construction equi-
valent to Newton's second law. Indeed, the law ensbles one to
find Jq acceleration using the given force snd mass. The force,
in its turn, can be found from the acceleration of probe bodies.
which mostly differ in their masses from A4 . .

In fact, to find A acceleration one must fix P versus
A mass ratio. According to Newton's law, P eand A accele-
rations must not differ by "more" than a scalar parameter, i.e,
they must have the same direction.

The natural representation explains the real reason of this
habitual fact - only such situatiohs can be expressed in terms of a
contact scheme.

Besides, f) obtains an. important property of uniqueness.

Only one element of j:' is needed at each space~time point and
at each velocity: if Xp-""—- XP-* s then X;, r:)(;af .

From the view point adopted here, these considerations are to
be taken as the foundation on Newton't method: one motion is compar-
ed to another directly, since the procedure can be expressed in
natural terms.

To find the limit, as chains become smaller, one deals with
velocity increments that are small as compared to. C . Then it
follows from formula (1): XPB/X:;} Xféﬁ __1@

VA
denote absolute values of £ and 4 velocities. Thus the ra-

where 3{;‘: and %

tio of the masses is the inverse ratio of the velocitiea, i.e, it

<0

is the momeniunr increments that are equal for /‘? and P .

Left differentiableness that is a necessary condition for the
previous construction, must be considered as a requirement that
is to be fulfilled with the components of the scheme ( J? }, R
and also ,-4, 5...) in order to use it in mechanics. The narrowing
of the class of situations fit for analysis is compensated by the-
efficiency of investigation.

The next step in this direction wi.ll be the selection of prob-
lems that allow to present influences at some basis in /o G

Choosing three elements (X, X3 X3)= (Xa) (“:42;3;3{1%)})
not belonging to a straight line, one may fix any element X
(3 {){ (Xﬂ)} with its decomposition coefficients in the ba-
gis (Xa) .

The numbers ;‘fa XXX&' may be taken as the coefficients
(the numbers Xa XX& Xe ere known as ( Xa) has already
been chosen).

An influence F can be presented by means of a basis if

F locally conserves the ratios of oscillation numbers, i.e. if

X, XX&X; :Xaa/xgxc % (}(a) being chosen arbitrary. The
set of forces satisfying this condition in the canonical version
may be found from formulsa {2).“;.{‘r XV;J@ do not vary if scalars

U, Uy, end U U;; remain unchanged. This is the only case
possible in a homogeneous R (there being no explicit dependen=-
ce on the contact "number").

Herice, the influence of F must be such that in the firat
order with respect to independent variable it would n:::t change the
acalar products of four-dimensional velocities of the bodies hav=-
ing a common contacte.

It is Lorentz force that satisfies this requirement. Let ¢
and Uy, be thne initial velocities in a link, Uy and U,
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- the final. Then

S : ~
Ui Uy = ( u',*"m—aa'aﬁg"«fm a’ﬁ”“ﬂ*,«“ﬁtﬁif:ﬁuﬁc’/fgﬂ”
/

Ui Uy g Fmﬂmd"{h ds, +FTT 2 Fine Uan Ui d;_;}

The term linear in G{,S‘ will equal zero if %:%:%
I
d,ﬂﬁd%-'-‘-dé‘ as in this case after changing the sum indexes in

the second term one obtains

H:;‘ ”z:.' R Uiy, +r§£: Uy Uz CFope tFpcdlS = U Uzt

due to the antisymmetry of Fg;r for the Lorentz force. But

it is in the natursl representation of X—v}( transitions that
all d,f are equal, because for the three (X,) the beginning
of counting photon oscillation numbers to measure the influence
result is automatically determined in a symmetric way. Elements
()(a) belong to a sphere (perhaps, not to a single one). It is
reasonable to begin the oscillation numbers counting at the time
when a photon starts from the sphere centre that is fixed in R
as the sphere has been already chosen. In any sphere radisl velo-
cities of its elements are equal in the referer{ggn?:here its cen-
tre 1s at rest. Hence, the corresponding oS; are equal too.
Thus, Lorentz force corresponds to th.a natural procedure of find-
ing the influence reault at any link of a chain. First, the basic
three (Xp)  1s chosen. Second, a sphere containing the basis
is chosen, and the initial photon from its centre coming into con-
tact with ,4 8t the end of the preceding 1link is found. Third,
the elements ¢Xj) .as tangent to (/) are found (as there
exists {(Xa)(}{a}} » the three (Xa) can be fixed by numbers
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5{ in the (’Xa) basis too; the conservation of oscillation
number ratios at Xq-?)(;: transitions guarantees that if
elements chosen as (Py) have equal ©%7 , then ~  is Lo-
rentz force). Fourth, X).:; tangent to /‘F before the com-
mon contact {/F (Xa) (Xd)j is found and its decomposition co-
efficlents 3" in the basis ( XzJ) are determined; the ele-
ment Xf having the same - X'j in the basis (Xé) corres-
pondsto the element /  with the same €43 as the basic
ones, Pifth, the element X/; tangent _tu /4 at the next link
is found as described above using the given F= (%)%%’?p by
Newton's construction.

W#hen comparing Xc; - decomposition in the basis (Xg) with
the canonical version, one must take into account that in the sca=
lar uﬂ‘é da¢ in formula (2), determining Xq XXJ X.:; one
must find the terms up to the second order with respect to ,."; "
which is not necessary in Ua¢ U4, (Q#E£) . After taking the
root and expanding the logarithm as a Taylor$ series these turn

out to be the first-order terms, since (/g are perpendicular

0 JU%S :

! . £ { O/ 7} o
Uac Uac = (Ual + :;";f;." ::a’.5‘+E dg;"' As2) Uai =

:—i‘f'z‘iuﬂb 5{52 d52=-4+ Z—fecz) Fon ﬂg,aamudﬁd;z

Ul Uas +V/(Uailal)*~1
Uac Uac —/ (UagUai)®-

~ e :
gﬂ mc2 i/jcmn an Uam uﬂQ d.f
In the reference frame where Xn is at rest, Ua:f:-'(D,O;U, g,),
and hence in the last formule under the root sign -F,, /= F 2
where [  is the absolute value of the electric field strenth
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in this frame. Of course, this may be directly obtained from formuls
(1) which is, however, inconvenient for determining numbers

Xa Y XgXa’ -

b & 4 ﬁ << 1, the Lorentz force properties that make it rep=-

resentative in the contact scheme are obvious in three-dimension-
&l notations, The electric field adds equally to the velocities of

Pﬂ. and being equivalent to the local change of the reference
frame does not change the oscillation numbers. ‘I‘h-e magnetic field
does not change the scalar product in the first order in df due

to the mutual compensation of the terms with the scalar triple
products: \/, ( V&"'H) + 1, ( VEH) = 0.

It is useful to replace canonical relations by the natural
ones, primarily, to substantiate mechanics, i.e. to pr::-vé that
its main concepts do not depend on intermediate objects - rods
and clocks. One the other hand, oscillation number counting pro-
vides a definite empirical result even if the basiec trajectories
of bodies from R are not uniform and rectilinear, though the
contact scheme may be the same.

Locel correlation between ﬂ and P established in a
certain way does not necessarily mean a CP solution in its ori-
ginal sense, even though this correlstion may be known asll along
the /? trajectory and the solution may be found by integration.
Indeed, the solution that iallea:ned only at the end of the mo-
tion does not predict the final contact: by the moment the solu-
tion is obtained the occurrence of the contact is evident by it-
gself. This is not use;t‘ul for the main purpose - to influence the

final contact occurrence by the proper choice of
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A -n-.,.j'r"

Hence, one needa to fr.irther restrict the set } that is
to be analyzed. Besides codifying in R the set musat make it
possible to restore every ~ € 7} from the initial datas; known
initially only for some subsets PE‘ ,fi F must be extended
to others by some regular procedure. Investigation of such exten-
sions is the subject of the "field tll'leory". i

 Correlations of /4 and P2’3 as well as different 2’7
hav& been established up to now only for the case of their com-
mon contact. Now the analysis should be extended to a more gene-
ral situation. :

As mentioned in the section 2, simple natural representation
assumes not only multiple contacts, but a set of contacts as well,
connected by photons. In this case the starts and the finiahes
of oscillation counting can be coordinated as well,

{ XX }<{XX ]
K (X1X) every body X may be communicated to

Let a pair of contacts be marked -

In the set

{)( ijz with a photon: as X is not a photon there exists |}/
dxﬂ”{{fﬁ}{{ﬁ;{)ﬁ}. In particuler, the set of photons that
start from . X simultaneously with {,\.{){,} posesses this proper-
ty too. This set forms the limit sphere in A (X jX;) denoted as

5+{,Y!X,J » corresponding to the light cone of the future with
respect to the conmtact {X Xif + Analogously, there exists for
{X ){2} the sphere S_{XIXQJ" corraspc;nding to the light cone of
the past, that has contacts with S *(XIX)),

The set of elements X ( XI X, 3{)?5-()”/\’2) 5+()(I)f}')j) is
initial for the extension of /£ « Given the )'(-—r/’.{” transitions,
one can find that . of X"Xl: Bach i-‘fr must influence X-r)(;
if F can be extended through the final intervals. On the other
hand, transitions inside the sphere do not influence each other;

Z—-—r)-(: cannot influence 5(-1**'/\-'; gince they both influence X-er
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and the existence of an "extran way contradicts to the limit cha-
racter of photons.

flence, the only possibility in this case is to define X-— X'
using a simple arithmetic average for some quantities that are
given at the sphere, Thus, it is necessary to define some sart
of integration on the sphere S (XIX.). This requires the iniform
subdivision of the sphere, However, this cannot be done directly,
since at the 1light cone® ¥ numbers are meaningless. So, a Iimit
process is to be defined. A sphere ¢ (,\"'if) from the set A (XiX)
1s chosen and a sequence ,5:,,.5 srr _,S;E/‘.ﬁfi’j is constructed so
that - a’xhx;-ﬂ-o as J]-- oo , The sphere ,.gn
resented by /77 elements being located uniformly on it (see sec.2).
If, for example, to choose JN =77 >

may be repe

( 4 be positive and large
enough), then the subdivisions become smaller as S’h -? ’5""
inspite of the increasing of the "radius"., Thig construction will
be taken as the integral subdivision sequence on the sphere S XX
The -limit will be used for the integr&i; it is determined in a
unique way in F£3x7T as -{XX,} and {X)-’g} are fixed,

The simplest class of influences 7, , whose elements can

X X

- — (it
transition is the arithmetic average of X,,},rw—"‘ thﬂ transitions,
x (¥
n

be extended by integration, contains such /&~  that

where gphere subdivi-

is the ?ﬁelement from the [} th
sion. According to sec. 2 there is the vector gpace K (Xf)f,g)
m -
at '{XX;_} « Hence, the element X:_’ -_-511 SXH(MJ; (/ﬁ:{w?f)fn{ﬂ
$=1

may be determined. The limit of the sums as 1 -—> o9 presents the

e

element X' .

The extension procedure far F € -?a expresses Huygens' prin-

ciple directly.

“he next, more complicated class F can be constructed if
p . '

— i

to take into account, besides X —= X'
‘26

trensitions, their "deri-

vatives". Space differentiation cannot be represented naturally
by itself. Indeed, let a pair of transitions ,E-a- z’?; and .E,""
-.-_fj' (X, )| X)ve communicated with a photon. It seems, it is pos-
sible to define some sort ;1’ closeneas of )-'!,'-n to )-(, along the
photon trajectory by the oscillation number 77, when starting
the count at some {X, X,"f<{% X} ena finisning at {X, %'} .
The sequence X,,, Xx... (XK | %) with the initial photon V'
CI{XXV'E; I XV ] ana (XX ]<{XA )< K VD)
corresponds to the sequence of the increasing numbers 77,, .
But this procedure does not yet define any natural object like
derivative (say, fim Io(XxXo) ) as 7, depends on the ini-
tial moment of tE:pcqau.nt too. However, it is possible to define
in & unique way "integral of di:t.ferential",' and this is the only
needed to find X-»X' transition. The sequence (Xx) 1is coor-
dinated with a partition of the photon V  trajectory ({yJX,X, }
< {VXXJJ : the (Xoe) sequence is found ( J {)\—’;t V}, Eﬂ,*:)?w
X X, -{)?ut y} {zf)a;tﬂ}yf{{X){'Vf). Beginning with the contact
(' Rer VYKo }, IV Kot} 1Yo} L (V" Zet}) and up to {y Xie}
the numbers - nt{t.}-f} are counted; for each value 7?#” the
sequence fi’g{;) must be chosen in such a way that there would be
Yok = Necesy) tor a11 £
of the elementa in the {fct)

« Then some definite number 7 (k)

sequence corresponds to any EH -

- The contribution to the integral sum determining X—?X'f and

corresponding to X  increment along the )/’

ry is lim T(K-X)) .
K oo
- Thus, 1t i3 necessary to make the set of -operations in order
to find X— X' transition. First, to comstruct Eéafﬂ{)?a)a,féﬁ}}
= = . T s e
Xco ll XK ) « Second, to :letermlne the difference AX = X~ X
i i
in the linear space K (XolX,) . Third, to determine at {XX}
A Xk
27

photon trajecto=-

the element parsllel to and to multiply it by T(k) in



KXiX)=KXX! FPourth, to tind the limit as K- 0O , Fifth, to

average arithmetically on the sphere, as (/5(-0} ig an element
from the set uf the sphere S ir)i'}}{é partitions (it would be writ-
ten in full)( (9*1' M, and the double limit as K—+©C and N0
would be used). Sixth, to add the result to a solution from 7o
(e

It is easy to see the connection of the 3; cless with
the solutions of the Cauchy problem in the canonical version for
the homogeneous wave equation. The 3‘,_, ¢clasa corresponds to the
solutions with the initial time derivative equal Zzero.

It is known that it is a V' photon from the ST (X/Xi)
sphere (not from 5"()(!'){'2) containing )/

for the solutions would exist in reality. That is because the dif-

)} that must be used
ferentials along )  are not independent one from enother. The
- = | — o
)(Iwﬂﬂl")(ﬂ,r transitions influence @ll the intermediate Xoz —~ Xot.
ones as they determine X— X' | Differentials along }/I are
called usually the leading out the light cone with the vertex at

{XXZ} ones.

The 3‘1 class corresponds to the nonhomogenecus wave equa~-

tion. It 15 constructed like F , but instead of 'I{'K)-cﬂ)‘fn

one forms Z Ag XK
t=f
the subdivision point of the ]/

that sums the leading out differencies at
trajectory. The same result
riay be obtained if to express 3‘2 as the integrals on the 3;
aubsets, i.e. to use the differencies At){ ‘ﬁtﬂ)(ﬁ'( and the
sums Z t(ﬂgﬁg &tf;Xﬂ. In the canonical fam of the wave equation
it is 31131? these differencies that are equals the right hand side
function.

Thua, it is Kirchoff's and Poisson's solutions that are basic

in the natural representation, not the wave equation itself. These

golutions a~« meaningful as the naturel constructions even if the
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wave equation cannot be written at all: the necessary derivatives
do not exist. Natural constructions correspond to so-called dis-
tributions (or generalized functions). Hence, these are tha'real
objects that are examined in a CP.

The elements from 3;_ ?3} 2 F, are known as "fields". The

3’, class (1:1.1& "free" fields) consists of F"f’ that s.re fit

for CP solutions. This is wrong for 3‘1 : the information is
required up to the very {)(X} in order to construct the exten- _

sion of F€ 7,

duced just to exclude such information. So, the effective reali-

« But the very concept of field has been intro-

zation of 31- class is possible only if the information is pre-
gented in the initial datas by itself.

For example, the ,q
ther body motion, that allows the natural extension as the initial

motion under a force depending on ano-
contacts are given, will be a E&_ element that is not a JZ
element. The forcin; body motion must be known beforehand or con-
structed recursively together with the solution., It is only mean-
ingful that all the information is presented naturally.

In distinction from elements of nﬁa these bodies trajecto-
ries are to ﬁa known totally, not only locally. On the other hand,
it is sufficient often to use only some general properties of the
trajectnries'{especially, if there is a lot of such "field" bodies).
Thus, it may be useful not to distinguish bodies with equal "char-
ges" and so to form the concept of "current" when admitting the
field bodies transpositions (in addition to their motion law) as
aniaperatian that does not change f .

In essence, the Sﬂz class corresponds to the problem:-tn
find s3ome body trajectoriesa given some others ones, It is usual

to call the latters the "field generating sources". “he natural

repregentation of [ is equivalent 2t %t{he casze to the wave
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equation as solved by means of Greea function. As distributions
are used, the initial data may be added to the source functionm
in the form of delta-function and its time derivative.

The concept of source in the form of the set of moving chare
ged bodies, as applicated to the Lorentz force, turms out to .ha'
the only possible and in the cancnical version results directly
in the special aplitting of the wave equation - the Maxwell equa-
9Fix yields the functions J'.r, ful-

P X x

filing the contimuity equation ,a—xﬂ"—‘
&

tisymmetry. This is the consequence of the Lorentz force natural-

tions. The divergency

, due to /S 4 ean-

ness, as it has been shown above. In this context, the so-called

Maxwell system second pair gi‘:“‘ i é’ﬂ'j‘: is not connected
M

as yet with the motion of any body set, since F,/x has been

~defined originally only by the influence on probe bodies, but not

by any description as how to gannrﬁtu fields. But the contimuity
‘equation allowa to describe a source like the flux of bodies, just
~ the same as those in a GP..uu'ann means them nonvanishing in the
proceas of their motion. Otharwisn, & CP would become pointleas,
because by its very meaning there is no doubt that all the time
the same body moves that hag started.

Thus, the Lorentz force naturalness shows e way to realize
the J, oclass. any Fe F,
(a field from f, ) and a part that 1s due to the field particles.

can be composed from a free part

In the same way as the divergency equation, the nonhomogene-

ous wave equation for F ( =& 3 F"

tion with the antisymmetric ﬁm

(x) looks to be only a nota-
for the sums of the F /. se-

cond derivatives. But if now to account only charged bodies to be

o

field sources, then [J//x must be functions of ., (more pre-

second derivatives).
The onl;r possible antisymmetric combination of the type is g—-)‘:“:‘ i

e ad" that must be, hence, egual n”( « This is a physically

XK .
meaningful proposition: Only charged bodies can be the sources

cioualy, of their derivatives, i.e. of Fm

of fields. This is always true since the continuity equaftion holda
for the fluxes of nonvanishing bodies. This guarantees, in its

turn, the natural representation of a CP as a whole.

The connection between the wave equation and the Maxwell se-

FCK ?ka
cond pair results in the Maxwell first pair: 3){; + XL *

g’:"‘ =0 . Indeed, differentiating this equation in respect
K

to Xg suming over f and presenting the third term by

means of Jp from the second Maxwell pair, one obtains: nm
3K _ 3di

o 3X¢, 3ch

For the approach adopted here, the presented consideration
must be taken as the substantiation of the theory of electricity
by the possibility of its natural representation. Tha; effective-
ness of a CP solution forces them to perform experiments in such
&8 way that electromagnetic phenomena are revealed and distinguish-
ed. 1

Gravitation cannot be represented in the same way as Lorentz
force. It is impossible to construct a set p different from R
and to measure F by the mutual divergence of P and X
since the accelerations of bodies do not depend on their massea.

Gravitation but then influences geometry, i.e. the structure
of a set R . The influence may be presented in different ways,
for examplg, by means of the number X;X;XX: Xzf that was defined
in the section 2 for a pair of contacts {X:XI} and {X}W;} con-

nected with the photon \/

= f

the equation x:szxi 1 no1as 1z X, Il X/, X, Il X3
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trajectories of bodies of R are uniform and rectilinear ones.
The "noneuclideanness" can be represented in natural terms as the

"violation of this equation.

One can express the violation locally only in respect to a
fixed elem-ent Xa in R « For any contact {X,X}La photon V
(H{VX,Z,}) and a contact {_K; )E';} ({UX;E,}/‘" {V%ZJ;
X ”Xo, ‘fiﬂ)?,} the oscillation number ﬁaf is determined when t
starting the count from an arbitrary moment {LXg} and count-
ing up to {Xn/‘?n} « A next pair f’X:.'A'}"} ( {VX.-)?;} '(XVMI)E’}{ k
{VX‘,/E}’ X,WX;_, ,f:f/)i—}}is chosen so that ﬁ,{;rf/ﬂxfxd> ! . A sequen-
ce fX,I)?,I} Rt (,!(‘r“.f, (ﬂ:')“_ is construct‘eﬁ under the condition
?’?,{f%m/ﬂxfm -+ 00 S
=KE$ ?'?xfx!fﬁa;/??x‘fmc“x X’m}f:rm_j) is calculated. Then the se=- f
quence (Xg) is chosen: { Xo ,‘(g} < {Xoxeff}<{Xufﬁ},

4 £el : ; .
I?;“ﬂ‘? x}}(,'”}j « The quantity V: {iﬁ Ié may be taken to measu-

as A—= OO, The quantity |} =

re the violation of eucl‘ideapness. The analogous construction must
be done for the inverse order of the initial contacts ({ VX, X j<
{V%X-u})- It is essential that the value of V/ depends, ge-
nerelly speaking, on the choice of Xp .

Another way to measure the noneuclideanness is to choose a
three X.‘ ff)'{zﬂz\/j; end to examine the function dz}?’%’?};
that equals zero for apEuclidean space.

The natural representation of the so widely used in the canoni-

cal considerations concept as extended three-dimensional bodies is

analogous, in some sense, to gravitation. Just es gravitation b

disturbs the reference bodies trajectories, the extended objects
may be thought of as an obstacle that disturbs their contact
scheme., Otherwise, if the c‘n;jectTia treanaperent for reference bo-
ies there exist camp'léx continuum -~ type subsets of contacts in °*

R between T ard X”.
32

4. The contact scheme that is defined by intersections of
atraight lines in ESXT‘ seems %o be very specific. Gn the
other hand, all the investigation complex, including A, must be
chosen basing only on the aim of the problem that is to predict
the final contact occurence. Hence, there arises the problem to
define a contact scheme in the internal terms only, i.e. without
any reference to a model like ESXT . Of course, the model may
appear as the rgsult-ﬂ:r a construction. It may turn out that the-
re are no objects in Nature that are suitable as the elements of

/AR . But the analysis purpose is to establish the necessity:
what sort of elementary objects has an experimenter to look for
and how to use them for a CP solution.

It is useful at first to consider some more genersl problem
than CP in mechanics.

Let some systen }? be able to occupy different states 9”
from a set 49 (the way to distinguish and to mark states is of
no importance here, though it is presumed to be made somehow, for
example, by colour). Let it exist, further, among these states
aome state . ‘;' (the "finel™ one), and the aim is to put ﬁ to
this state.

1f there is no way, according to the rules atatgd.bafnreh&nd.
to reach 9, then there is no transition problem at all: 'a per=- .
son wenting to use the solution is "helpless". If it is possible
to transit simply ﬂ to Q, from any state, then it is super=-
fluous to solve the problem: a person wanting to reach ?, is
"omnipotent". The problem takes place if there exists a way to
reachq&though not directly but putting at first ﬂ to some inter=
mediate state f}y._,_ g

The state g, mnust be descripted externally es the need to

reach it must be ghown before the problem is formulated., All the
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other elements of the set @ {including % but now being re-
garded as an element of @ y i1s@. with its internal definition
in respect to the problem) are to be chosen in order to solve the
problem. Hence, it may occure that it is possible to reach ¥,
through intermediate states if &  has been chosen succesfully
and not to reach %c if the choice of ( was wrong.

An initial state will be denoted as % « Then there exist
the transitions ?’-" ﬁ}f and ﬂyé —+ &,, their order corres-
ponding to the very problem: to reach just Q; . Hence, there
arises the so=-called causal relation. Conaequénce that is some=-
thing important by itself has an external description, while the
cause, on the contrary, must be defined internally and is impor-
tant only since it implies the consequence. Hence, causslity im-
plies asymmetric relation - order.

Let now the state 25/1 be 11-01: such yet that the transi-
tion fff‘;i —~ &, is known directly, but, nevertheless, it is "easi-
er" somehow to find 5}9&—‘* 9, than & -» %, . Then one mey look
for 3/, that realises else easier transitions ‘?ﬁ" %3/, and

93/y~ %. In the seme way, there may exist @, the transi-
tions 9, %,, and & - 7, be intermediate for 2" % .

Continuing the process, one looks for a set 5?’%, 2,/ ¢ 5:
the transitions along £ 1lead from 2, to @, without fail.
Thia set must be infinite. Indeed, if it would be finite then it
Jmuld contain the last element gﬁr}, the transition ‘g(x; ""9;
be gue;ra.nteed. But in this case there is no reason to distinguish

‘;m from g; * in & : this would be superfluous for the
transition problem selving. As identifying @, to  Zmy, the

same situation is obtained in respect to 'g(K'f/ and so on.
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As Z ig infinite, there may exist false sequences that

do not lead to any limit element initial for further transitions.

Consequently, fff(‘;,, ¢,) must be completed up to £(%, %/ by the

limits of all such sequences. A proper space & by its techni-

cal realization must include all the needful subsets of the type
g’(g,, %) - the "patha".

The procedure used to obtain sets £ is such that the
indexes marking the elements of ¢ form a set similar .to the
real number axis segment, i.e. €'’ are "perfect”., The distinc-
tion of the "rational" elements that are used for the initial ‘con-
atruction from the "irrational® ones, which are the limits of the
sequences of rational elements is nothing but nominal. There is
no difference in their realization as devices for fixing elements
in & . Some other choice of elements for the initial construc-
tion would replace rational elements by irrational ones and vice
versa. Chaenge of numeration conserving order (similar mapping)
would not change €  as the subset of & . In epplications,
there are examined often several £<C & simulteneously. This is
necesaary, for example, when the solutions for variants of influ-
ences /&~ are compared, or the field bodies trajectories are
fixed (as in the section 3). However, the order has been defined
for different f'ﬂ independently and cannot be transfered, ge-
nerally speaking, to (! as a whole. The index of ¢ el is
not its own one (as a "number that is written" om 4 }._It is
only an external notation escrived to ¢ as the set £ 3%
is constructed; if ¢ € g, end ¢ € le there may be different
indéxes of § in € and £, . The set & that includes dif-
ferent 6’5 is not ordered. .

It may be possible to construct a space having its own partial

order (clocks at various points) and to use similar mappings in
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order to select a linear ordering in every £  as induced from
@ « This is the way adopted in the canonical version. But this
is not convenient for the initial ;nnsideratinn that cannot use
some re_a.dy technical realization. On the contrai'y, one has to find
what a construction of & may be useful to solve the exter-
nally formulated problem,
As 8 matter of fact, if to introduce some partial order in
& from the very beginning, if would forbid some trajectories
(ordered incompatibly to & ). This results in that not f;::r each
pair (4,,9) there exists 53(?,,, #¢) . Hence, one has to control
the choice of an element, for instance, Q/;,;r according to the or- I
der in & stated a'priori, i.e. 9;& cannot be any. But thf.-ﬁ

the partial order in & turns to be some basic hypothesis that

must be checked in experiment. The last must be performed accord-
ing to some rules. These would be external as regards to the prob-
lem and hence unacceptable for the approach adopted here, requir- i
ing that all the constructions (including & itself) must origi-
nete from the very statement of the problem only.

Hence, 1t would be better to keep, at the stage, the property
of @ to commnicate each pair of elements with at least one
path. Then one obtains free indexes for any ¢ . This is useful
for the subsequent inclusion of the partial préblem in a whole one

by the proper fixing of indexes.

There arise the complications, but then, as regards to the

practical solutions for £ . The different parts of a path, say, &

the parts @g- fﬁ’i and g;{- 9‘, are constructed independently. The

whole ¢ is obtained as the parts are unificated at gﬁ’g’ s 1% ,

cannot be excluded, then, that common elements may arise and so a

selfintersection of ¢  would take place. At the case, order in

f would be broken. For some pair (g“ %J there occur both f; 4‘.'%(.
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and q,g‘< i,_- e The simplest situation of the kind may be presented

as g single circle. The elements ng and f:,g, coincide in the
sequence 4.4, - %4 = 93, > $s+ Denoting 24 = f34 = g
one can see that there arise the partial paths &, =2 — 24,
and 9 e . 5{ -~ 4, forming together the path with broken order.
Order may be restored if to introduce inertia, i.e. if to suggest
that in order to find an element in a sequence from the motion law
it is necessary to know not only the preceeding element but also
the pre-pr'naceeding one., Then for the example presented gbove it is
fﬁ (not Q’, ) that follows ¢ —= f Just as it is 9; (not ‘%-i]

that follows @, = 4 . This is the informational meaning of
the concept of inertia (not in mechanics only). Inertia is used
to restore the proper order in circled paths, i.e. the order that
corresponds to the initial one. PR

It may occure in some more complicated cases that the selfin-
tersection is multiple. There arises the question as to how com-
plex a selfintersection scheme might be for it is possible yet to
restore the ini.tia.l order of a path (i.e. the path round similari-
ty class) from the path very picture. If s0, it is possible to
d.iiride. according to this order, the gelfintersection (braﬁchy}
points and so to find the full solution with the order fixing in-
dexes.

The choice of the pfaper'bra.nch at a branchy point tﬁ should
be determined by inertia if there is some ?i that belongs, *o-
gether with fi to a linearly ordered part of € - without
branchy'pc-ints. The set of the branches at any point muat be not
more than dountable (and, moreover, descrete) for the parts could
be rounded one after another.

For the same reason, the set of the branchy points can be not

Zore than countable too. “here cammot exiat, further, any branchy
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point sequence that converges to a branchy point (the term "con-
verges" means here that there is no linear ordered part containing
the points of the sequence in the limit point branch). Any such
sequence would converge either to a point with only one exiting
branch or to the final point &, .

All the variety of ﬁ’” is bm.mde.d by the necessity to sta-
te the unique round of any path, the order coincides for the 1li-
near _urderad parts with their own.

The space & itself is meaningful only as a structure that
contains all kinds of paths and does not contain elements unneces-
sary for a path construction. This is the basic remark for deter-
mining of the geometrical structure of & as a whole, if the
structure of paths is given.

Each path is provided with the topology connected with the
path order structure. If to choose axioms that are convenient for
applications (though, perhaps, not looking extremely abstract) then
S0 usual concepts of topology as neighbourhoods nr. open sets do
not seem to be the basic ones. They may originate in the concept
.0f pathsi Any point of an open set cannot be reached along a path
missing all the other points of the set. :

The topology may be then introduced into & as follows.
There specified some system Z, of subsets E? - the path sys- -
tem., Each path bears the internal topology that is defined before-
hand. A set O<¢ & 1is called open if it turns for any F€ L that
ONE€ is open in & [2l.

The intermal topology of f’{ themselves may be also derived
from the point accessibility along £ . The last is based, in
its turn, on the order structure. In the natursl topology of an
ordered set the basis consists of opem intervals (g’ ?,'y :Q"{'f'(gﬂ.
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The path structure presented above requires that every point be-

longs to at least one neighbourhood [/[4) that is composited

of the intervals of linearly ordered parts of the £ so that
#, is the only branchy point in }/(¢) . Hence, one can reach
g salong £ in no other way than passing these intervals

points. Open sets in ¢ are all the neighborhood unions.

Provided with such a topology f,’ turns out to be an one-
~dimensional metrizable space with a countable base. It is known
[3] that such a space can be embedded toPulogicaily into & three-
-dimensional Euclidean space. But it is just the topological em-
bedding that is in question since the intersection of paths is
the only essential prahlém when the subsequent passing of states
is exemined. .

Hence, a space & whose only function is to contain all
kinds of paths as subsets (i.e. to include sufficient "stock" of
states), may be in all cases realized as a space gomeomorphic fu
Euclidean 53 at each point. The simple meaning of this state-
ment is that each curve cen be embedded in E3 , though one can=
not, for example, leave a circle along a continious curve in Ez
without an intersection with its circumference. Thus, Ea is not
"free" enough. It "forcea" upon intersections. But in a universal
space it is only a process itself that determines whether there
is a real intersection or there is not.

Returning to mechanicsa, as it is, one has to find a way to
fix states in order to predict the trajectory of a body comparing
its motion to the lmown trajectories of some suxiliery bodies. These
may be always represented by curves in /£ ° . Any procedure of
trajectory measurement must fix completely the trajectory of A

via the scheme of its contacts with reference hodies.
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This is possible if the set A  would be of sufficient dis-
cernment, that is for each pair {X’/‘?} o % {)‘.' ”,4} " there exists
X! {X‘ﬁ} «’{X,-?j < {X”ﬁf « This must be true, in particu-
lar, for the bodies from the set A itself (one may take X
€ R instead of /9‘ )« Then eny part of A trajectory would
be coded just as & part (not as a point {f/qf ) even if the part

is common for X and /‘? trajectories, because of the contacts

of X and A with other X € R ,

In general, the elements X and X" may come into more
than a single contact or t6 be out of contact at all. One has to
deal, in some cases, with the sequence of elements coming into a
common contact. This takes place, for example, when the local cor-

respondence X « O must be stated. In order to find the limit of

such & sequence in a unique way, it is necessary to mean just the

same common contact when considering the next term of the sequen-
ce after a preceding one. In order to make this possible, the set
/R must be chosen in such a way that for any pair (X:ijf the
mitual contacts {X’r)(”_f] would be distributed descretely, that is
for any {X'X"f the next contact FX'X'} > (XX}  ozists

. Y )
(there is no contact {X'X ”f” such that {/'!"'A’ o {(xx' #{X{X"y]_

These conditions are satisfied if to present A by E3xT
with the system of uniform and rectilinear trajectories or with
gome other line aystem topologically equivalent to this.

It is the multiple contact of the trajectory of a body with
some X that corresponds to this trajectory selfintersection.
This may be, in particular, even the intersection point of a pair
of streight lines being defined as in the seciion 2. Due %o iner-
tia that is necessary. to represent selfintersecting routes, it is

only left-differentiable curves that are retained for the anelysis,

9
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The set of uniform and rectilinear trajectories forms s basis

sufficient fto present any such curve. Tous, this set fits as a

device for motion coding.
To predict {ﬂB} "with

to introduce some topological structure into the space, as the

. laws of motion, it is neceasary

contact would be predicted if it is found from the lawa that A

tends to 5B in the sense of the topology (this is the reason

to introduce irrational points as the trajectories must be per-

fect ordered sets in order to make it sure that there is in fact
{,‘?5} if the trajectory of /A tends to that of B8 .

It is required for bodiea from p 1o be messive in order to
use inertia for the decoding of routes in practice, massive PEP
guarantee the differentiableness of trajectories in measurements.
The smaller the links of chains are used the less masses are re-
quired for / . In the limiting case it is only necessary that
the masses would be finite.
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5« As compared witll the cenonicsl wersion, the approach
adopted here is based in some less rete on hypotheses and in so-
me more on axioma. The difference is in that it must be checked
in experiment whatﬁer the hypotheses are true or they are not
true. But the answer depends on the solution of the problem as
to how to perform experiments. As to axioms, someone who intends
to use the theory may be asked whether the axioms aré good enough
for his aim. Therefore, it.is important to formulate axioms in such
8 way that their relation to practice would be clear.

Some hypotheses remain in the natural constructions too.
Bodies must exist. They must not "resolve" and vanish in the
course of motion unless the final contact is reached. Their pos-
sible disintegration may be teken into account only if the concept
of composite bodies can be introduced.

Measuring contacts must not destroy bodies and even influ-
ence their trajectories (in classical mechanics).”

All this is assumed in the canonical version also. 3ut, mo-
reover, there must exist rods and clocks that may be transported
from one place to another without the distortion of measurement.
This is to be checked up as examining some specific motions of
bodies ("free" motions) with the use of rods and clocks. So ari-
se, for example, Lorentz tranaformations.

An analysis of mechanics without using reference frames re-
veals the essential features of its geometry from some more gene-
ral viewpoint. The concept of space-time as of some devices or
instruments for the examination of motion that are not given

from the very beginning together with the body in question, was

* g : * ;
The gquestion in quantum mechanics is not the same as in classi-

cal one. Only probability distributions esre to be found. Hen-
ce, some disturbance of trajectories may be allowed though
this must be minimum in some sense [4].
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used long ago.

Zinstein and Poincaré constructed space basing on the pro-

perties of hard bodies. Some body was extended by means of put=-
ing others to it. It 13 necessary to use the original concept

of hardneaa or changelessness to construct space. The Feynman's
construction of clocks with the photon oscillations between two
mirrors is based on the possibility to retain somehow distances.
Just the opposite, the Born's definition of hardness requires

the use of clocks only, distances are measured by photon oscilla=-
tions.”

It is assumed in all these constructions that the main geo-
metrical properties of space-time are known, and it is only the
minimim means for their realization that is in question.

Einstein, however, thoughtabout the dependence of topology on
interactions, just like he postulated that metric depends on them.
This is evident from the remark in his "The meaning of relativity"”:
"That Zuclidean geonmetry, from this point of view, affirms some-
thing more than the mere deductions derived logically from defi-

nitions may be seen from the following simple consideration.

nn -1}
2

coordinates we have the

cetween’ h

points of space there are distances,
fﬂug ;'hetween these and the 3n

relations

1 3 8 »
Suv = (Xiep) ~Xeen)™ + (Xagm Xeey) ™+ ...

nn-t}

From these p) equations the JMcoordinates may be

elininated, and from this elimination at least 53%113-3!1 equa=-

tions in the Sf“]; will result. Since the Sﬂf are measurab=-

" le quantities, and by definition are independent of each .other,

- e . 3 .
“he review of a lot of napera in which tha problem is examined
in different ways, sse in the book: [1,5].
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these relations between the Spy are not necessary a'priori”.

According to this remark, the relation of the pPrimary measu-
rement procedure to the dimension of the space seems paradoxical
as the dependence of this relation on real physical rofc33 is
not explained explicitly: bodies (i.e. material points) do not
interact necessarily,

The paradox is explained at once if to remember that forces
themselves show only via their influence upon motion. In other
words, they are to be coded via the same coordinates. Hence, it
is necessary to construct a reference frame before the very con-
cept of interaction could be introduced and so there must be same
independent explanation of the reference frame construction. This

can be found if to regard apacthime as an auxiliary device for

the description of trajectories and so to prepare it in-accordan-

ce with the problem to be solved. :

It is difficult to understand the structure of any instrument
if to know its material embodiment only. It may be understood why
the form of a ruler is just such as it is among all the forms of
ell the kinds of objects only if to know the way it is used., It
is so habitual to use space-time that it seems to be given from
the very beginning and, therefore, the procedure of ité preparsa-
tion or choice for a CP solution is not realized explicitely.

~ From this point of view a physical theory is a language that
is needed to ask Nature. Any answer is perceived just as an ans-
wer only if it is formulated in the terms of the question. Thus,
the general meaning of the answer (the set of its variants) is
contained in the very question. Just this aspect of mechanics is
at the basis of the approach stating the necessity of the scheme

of mechanics,
44

2ut then there arises some more questions. Why are CP's so

usual? Why are experiments performed in such & way as they are?
The conaideration of ;hese questions in details seems to be out
of the framework of this paper. However, one may take into ac-
count the efficiency of a CP solution. Guarantees may be obtained
when the problem can be reduced to a CP. A hare, when meeting a
wolf, will not be eaten surely (the wolf, maybe, is not hungry),
but it would be safer for the hare not to meet a wolf at all.
This leada to the tendency to try to redﬁce any problem, first

of all, to a contact problem.
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