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ABSTRACT

Eigenfunctions of the auxiliary linear problems for the
soliton equations obey the nonlinear evolution equa-
tions. It is shown that these eigenfunction’s equations
are integrable by the inverse spectral transform (IST)
method. Eigenfunction’s equations are also the genera-
ting equations. Several (l-+1)- and (2+1)-dimen-
sional eigenfunction’s equations and their properties
are considered.
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The inverse spectral transform (IST) method is the very effec-
tive and powerful method of investigation of the partial differential
equations (see e. g. [l —4]). A starting point of this method is the
representation of given nonlinear differential-equation as the compa-
tibility condition of the auxiliary linear system -

Li(U; M) ¥ =0, (1)
Lo(U; &) ¥=0, (2)

where L, and L, are some linear operators the coeilicients of which
depend on U, Uy, ... and on a spectral parameter A. The nonlinear
integrable equation arises after the elimination of the eigenfunction
¥ from the system (1) — (2), for instance, from the commutativity
condition [L,, Ly] =0. The nonlinear integrable equations for poten-
tial U possess a number of remarkable properties [1 —4].

In the present paper we will demonstrate that one can extract
the nonlinear differential equations for the eigenfunctions ¥ from
the linear systems (1) — (2). It'is achieved by the elimination of the
potential U from the system (l)— (2). These eigenfunction equa-
tions are integrable by the IST method, i. e. they are representable in
the form of the compatibility condition for the certain (distinct from
(1) — (2)) linear systems with the quartet operator representations.
The nonlinear integrable equation for the potential U and the nonli-
near integrable equation for the eigenfunction W can be treated as
the two irreducible forms of the mixed (reducible) linear system
(1) —(2). _

We will show also that the eigenfunction’s equations are the
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generating equations since their solutions generate the solutions of

the other nonlinear integrable equations. The eigenfunction’s equa-

tions possess a peculiar linear superposition principle and they are
directly linearisable via the certain linear integral equations.

' We will consider here the eigenfunction equations for the several

well-known soliton equations in 141 and 241 dimensions.

1. The famous Korteweg-de Vries (KdV) equation

Uit Usee+6UU=0 (3)
is our first example. The KdV equation is equivalent to the compati-

bility condition of the linear system [l —4]
(024+U—A) w=0, (4a)
(0r+4024-6Ud,+3Uy) ¥=0. (4b)
The elimination of ¥ from (4) gives rise, as usual, to the KdV equa-
tion. Now, let us eliminate the potential U fmm the system (4).
Equation (4a) gives U=MA>—%~'W¥,, Substituting this expression

for U into (4b), we obtain the nonlinear equation for the KdV
eigenfunction’ ¥ |

Wi 60+ W, — 3 ', W, =0, (5)
Equation (5) is integrable by the IST method. Indeed it is equi-
valent to the compatibility condition for the linear system
L ¢ & (Wa2+2W,0.—\Y¥) ¢=0,

Ly ¢ & (W6, 4-4¥Wa3+4 129,02+ 6 (Ve +12¥) 8,) p=0 (6)
with the quartet opergtor representation
(L, Lo) =vily +yels (7)

where
s'l’l R i?‘]ﬂ@fﬁ S lgqfx;l:ax T 3"1'-,:” + 31'1']._ II.]':fxlEfxx ¥

e == A L _1‘ Vs
Equation (b) is representable also in the equivalent leit-cur-
rent’s form :
A Gl +612qf¢w—*+{qrxw—1}”’+-2 W, ¥ 1H3—0, (8)
in the bilinear form
'l_],P]_}f:+6}EIPI.}f +1quxxx__3q'r I_P' ;v-r-{]
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and in the conservation law’s form
(W) (BA2W 2 (W?) o — 6(F 1) D) =0

Equation (5) has a plane wave solution Wo—e™**' Intro-
ducing the function y as W=y exp (Ax —4A%t), one arrives at the
following equation

xf+im*31_'xxixx—5hx_1(xx}2=0, (9)

which has quartet operator representation too.

Equation (9) can be easily rewritten in the left-current’s, bili-
near and conservation law’s forms. This equation is of interest since
it directly leads to the two nonlinear equations without A-depen-

dence. Indeed, substituting the asymptotic expansion y=1-+A""y, +

+A "%+ ... into (9), we obtain Rt Riae— 0 ) —=0 that is no-
thing but the KdV equation in the potential fﬂrm (U= —2y,) while
for yo=x(x, £, A=0) one has x,4%pe—3%0 %oXo,=0 that, of
course, coincides with equation (5) for W (x, ¢, A=0).

Equations (5) and (9) can be considered as the generating equa-

~ tions. indeed if for instance, y obeys equation (9) then the variable

U= —y '(xx+2Ay:) obviously Dbeys the KdV equation. At the
same time the variable V=% 'y, obeys the Gardner equation
Vit Vi +6V2V,— 120V V=0 or mKdV equation at A=0. This equ-
ivalence immediately gives as a wide class of exact solutions of the
Gardner (or mKdV) equation.

2. The second example is given by the nonlinear Schrudmger
(NLS) equation

EP[—_Uﬂpxx_Eaapazﬂ, []{])

r
dition for the linear system [l —4]

(—030x AL P) ¥ =0,
((0:—2020%+2Pd,+ P, —03P?) W =0, (11)

~where P=(U g) and ng(:} 0) which is the compatibility con-

where W is the 2 X 2 matrix-valued function. :
Eliminating the potential P from (11), we arrive at the fol-
lowing nonlinear equation for the NLS eigenfunction ¥:

iV, — AW — 20, — 63W oy + 20,9, W, =0. (12)
)
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with the constraint (o3¥W,¥ ~!)4iaz=~A. Considering this equation for
¥ (x, {, A=0), we obtain the equation [5]

iV, —o3W e+ 209, 'W,=0. (13)

Equation (12) is equivalent to the compatibility condition for the
linear system

L flrfp el (—o3Wac+AV¥) =0,
Lyo & (%0, —4AWa,—20Y,) =0 (14)
with the quartet operator representation [L',L,]=viL, +v2L,
where |

P1=20, — AW a5+ Wos (V. ¥ )+ Wos (V¥ )2,
| ve=| ¥, 03] 0y— VoW, W .

So, equation (13) for the NLS eigenfunction is integrable by the
IST method too.
. Equation (13) is also a generating equation. Indeed, if ¥ obeys

equation (13) then the variable P=o3¥,¥~'—). obeys obviously

the NLS equation. The fact that at the same time the variable
S= — ¥~ !'g;¥ obeys the Heisenberg ferromagnet equation

iS4+ —[ S, Sur] =0
r4

(see e. g. [1—4]) is the more nontrivial and interesting result [3].
In the left-current’s form equation (13) looks like

VWY —os (W et os (PP 1) =0. (15)

3. Now let us consider the (24 1)-dimensional soliton equations.
The Kadomtsev — Petviashvili (KP) equation (see [l —4])

: {Ur+Uxx:t+6UUI)I"J}'3a2U§HE{]1 ; (16}
the most well-known from them, is equivalent to the compatibility
condition for the system [l —4]

(8, 62+ U) ¥ =0, (17a)

(04402 +6ud.+3u,—3aW,) V=0, (17b)

where W,=U and a?*=+1. Equation (l17a) gives U=
= — V¥ '(aW¥,+ W.). Substituting this expression into (17b), one
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obtains [5] the following nonlinear equation
VW, 3 3o WY, 3 W, — 3P W, =0, (18)
W,+a¥ ¥ '+¥ "W, =0. (19)
Equation (18) for the KP eigenfunction W is equivalent to the com-
patibility condition for the linear system [9]
Lo & (aWd,+Woi42¥,0,) =0,
Lo & (W, 4+ 4¥ai+ 12¥.03 +6 (Vi —a¥,) d:) =0 (20)

with the quartet operator representation [ L,", L, | =v:L, +7y2L, with
Y= —12W, 03— 12W,; 0y — 3W e +3¥ "W, W + '
+3a¥ 'V ¥, —3a¥,,—3aTW,,
Yo=2W,0,+a¥,+ W¥,..
Equation (18) — (19) is the (2 1)-dimensional analog of equa-
tion (6). Similar te equation (6) it can be considered as the gene-
rating equation: namely, introducing the variable U=

=—¥ (a¥,+ W¥.c), we obtain the KP equation, while the vari-
able V=W~ 'W, obeys the equation

Vl—i_ Vxxx—k—ﬁwzlfx"*BCEV;E?;IVQ—E—E’DLE@J}”lVyy:U, [21}
which is the modified KP equation, introduced in [6, 7]. At the
same time the relation (19) is transformed into the two-dimensional
Miura transformation U= —V,—V*—ad; 'V, [6, 7]. The equiva-
lence of equation (18)— (19) to the mKP equation allows us to

construct a wide class of exact solutions of the mKP ‘equation,
using the known KP eigenfunctions. '

4, The next (24 1)-dimensional example is given by the Devay
— Stewartson (DS) equation (see [1—4])

iP—o3 [P;x—i—ﬂtgpyy) —l—ﬁg ir {U;].QU} P=0 :
(00, — 0ady) Q p=03(0td, +6218x) PZ, (22)
where P:(ﬂ g) Q, is a diagonal matrix and a?= +1. Equation
- .
(22) is the compatibility condition for the system
(oxd,— 030+ P)¥=0, (23a)
i




(i0i—2020%+2P8,+ Q p+ o031 (aPy+03P,)) W=0, - (23b)

where W is the 2X2-nondegenerate matrix. Let us eliminate the
potential P from the system (23). Equation (23a) gives
P= (03¥.—aW,)¥ . Substituting this expression into (23b), after
some transiormations we obtain [5]

iVi—os (IP.II—E_ agquy) + o3V, ¥~ L)1 <} Cﬂzﬁ:slyy"}rm F"P‘H —
—a¥, ¥ 'Y, —a¥. ¥V 'V, +(aC,+03:C,) ¥=0, (24)
aCy—03C,—o3(aW,¥ ! —o W ¥ 1)2=0.
Equation (24) for the DS eigenfunction W is integrable by the

IST method. Indeed, it is equivalent to the compatibility condition
for the following linear system [5]

Lg% (@¥d,—as¥d,) g=0,

Ly ¢ % (i¥0,—2a¥.0,—2aW¥.0,—2a¥,d,) ¢=0. (25)
In the operator form equation (24) looks like
[ L Lo =Ly +ysLs, (26)

where L', L, are given by (25) and
T =2m‘ify6x+2fx‘lr";ﬁy+a :
vo=| ¥, 03] 0x+ ¥ (a¥W,—0c:¥,) ¥,
a=Wos (V¥ 1), — a?Wa, (¥, ¥ ), +
L oW [V,U L WU W (aC,+ 65C.) .

The IST method is applicable to equation (24) is a rather stan-

dard manner [8]. The use of the d-problem and nonlocal Rie-
mann— Hilbert problem method allows one to solve the initial value -

problem for equation (24) [8]. The d-dressing method gives also
the possibility to construct a wide class of the exact solutions of
equation’ (24) with the functional parameters and rational-exponen-
tial solutions [8]. ' -
Equation (24) has also a direct algebra-geometric sence since it
can be rewritten in the left-current’s form
VW — oy (W W) —alos (VW 1), —
WYY T W YW W 6Cy 4 05C, =0, (27)

aCy—03C:— o3 (a¥, ¥ '—a; ¥ ¥ ')2=0.
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So, equation (24) is of the principal chiral type equ;tion (see e. g.

[L, 4]).
~Similar to equation (13) equation (24) is the generating equa-
tion. Indeed, if W obeys equation (24) then the combination

PE(qurx—{Iqry) 111‘—‘
obviously obeys the DS equation (22) and at the same time the
variables [5, 8] :
8=86=—-¥"lo3¥,
® =2 In det ¥, (29)
where o,, 0s, 03 are the Pauli matrices, Db‘E}f the Ishimori equation
9]
Si+SX(Sex+a’Syy) + @Sy + DS, =0,
Oy, +20%8 (S¢S, =0, (30)
where §.§=L This circumstance allows one to construct the new
exact solutions of equation (30), in particular, the exponentially

localized solutions. The interrelation between equation (24) and DS
and Ishimori equations has been discussed in [8] in more details.

5. At last, the final example. This is the equation
P.—Aad;'[B,P]—ad;i'[B;P,]+[ad, '[B,P], P|=0, (31)
which describes the resonantly interacting waves in 241 dimen-
sions x, y, t [1—4]. Here P is the N XN ofi-diagonal matrix, A and
B are diagonal matrices with the distinct elements and

adﬂcbg[ﬁl,{bj. Equation (31) is integrable with the help of the
linear system [l —4]

W, +AY,+P¥ =0,
¥, BY,+(adi [ B, P]) ¥ =0, ' (32)
where W is the N X N matrix.

Eliminating the potential P from (32), we arrive at the follo-
wing nonlinear equation for the matrix-valued eigenfunction ¥ [5]

W, +BY,—ad; '[B,(V,+A¥) ¥~ ¥=0. (33)
Equation (33) is integrable by the IST method too: it is equivalent
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to the compatibility condition for the linear system [5]
Lg% (¥o,+A¥d.) ¢=0,
Ly o2 (o, +BYa,+ W) ¢=0 (34)

with the quartet operator representation [LY, LY =yiLY +yoLY,
where :

"w=|¥,B] 0,—¥ Bdﬂ_[[ﬁ_ Yo LAY Y J
?2:[4’41 ll-r] .fjx—}_ I.[J' (Lpﬂ+ﬂl+rx] ]_I_]-— 1 ;

As in the previous cases equation (33) is the generating equa-
tion. Namely, if ¥ is the solution of equation (33) then the variable
P=— (¥,4+A¥,)¥ ' obviously obeys equation (31). The equation
for the quantity S=% 'AW should be the -second generated equa-
N—1

tion. In the case B= Z C,A" where C, are some constants, this
a==Il)

equation looks like [5]

N—1
Si+ ) Ca(S"S:—S(8":—(8"),) =0. (35)

n=l)

Equation (35) is equivalent to the tnmmutativity condition
[L3 L5] =0 with

N— .
Li=0,+80,, L3y=0i+ ) CaS"0x. (36)

n=»0

Note that equatien (35) is the local (2 1)-dimensional integrable

~ equation.
The simplest equation (35) corresponds to the choice
Co=0=0Cs=".=0 (=1 and is of the Iermn

S:—85:5—(5%),=0. : (3?;}

Under Z, reduction or in the scalar case equation (37) is of the
very simple form '

Pr— % (¢%)x—(9%)y=0, (38)

where @(x, y, t) is a scalar field.
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6. An important feature of the eigenfunction’s equations is that
these equations maintain some properties of the linear systems from
which they have been derived. For instance, equation (5) for the
KdV eigenfunction possesses the plane wave solution Wo=e™ "
Moreover, the rather peculiar linear superposition principle takes
place for equation (5); namely, if ¥; and ¥, are the two distinct
solutions of equation (b) obeying the additional constraint
Vo'W =W o'W then the linear superposition a¥4-b6¥, where a

Ixx Pxx?

and b are arbitrary constants is the solution of equation (5) too.

This property is an obvious consequence of the equivalence of equa-
tion (5) to the linear system (4).

By the same reason the solutions of the eigenfunction equations
are given also by the solutions of the certain singular integral
equations. These equations are, in fact, nothing but the corresponding
inverse problem equations for the linear system (1)—(2). For
example, the KdV eigenfunction y obeys the linear integral equation
(see, e. g. [1—3])

e ot

we, ) =14 = | av
2ni

—

R(A) x (x, , _:ﬂ‘;) e 2id‘x — BN
A —A—+-i0

where R(A) is an arbitrary function. So the solutions of the non-
linear eigenfunction equation (7) is given by the solution of this li-
near equation. :

The similar equivalence takes place also for the other equations

considered above. More general corresponding singular integral

equations can be found in the framework of the direct linearizing
transform method (see e. g. [9, 10]):

7. Thus in all cases considered the nonlinear equations for the

soliton eigenfunctions which are derived from the corresponding

auxiliary linear systems are the equations integrable by the IST
method too. One can easily add the other similar examples. It is a
general phenomenon. :

This general phenomenon can be treated as follows. Let one has
the linear system (1) — (2) which contains both the potential U and
the eigenfunction W. The elimination of the eigenfunction W from
this system gives rise to the nonlinear equation for the potential U
which is integrable by the IST method. On the other hand, the eli-
mination of the potential U from (1) —(2) leads to the nonlinear
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tion, e. g. the KdV equation and mKdV equation [5], NLS equation ' i '
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mKP equation [5], DS equation and the Ishimori equation [10, 11],
equation (31) and equation (35) are the equations which are gauge
equivalent to each other. The corresponding generating equation
(the equation for eigenfunction) coincides, in fact, with the equation
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[n conclusion we emphasize the fact that the nonlinear inte-
grable eigenfunction equations are the principal chiral fields type
equations. In virtue of this, it seems, they should admit a direct
algebra-geometric treatment in an orbit framework with an appro-
priate infinite-dimensional local Lie groups. -
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