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ABSTRACT

A novel claas of self-dual. solutions in 6 -models and in
SU(2) gauge theories is considered. The solution is defined on
manifold with boundary, it has topological charge Q = 1/2. The
contribution of the corresponding fluctuations to chiral con-
densate is calculated. This contribution has finite nonzere
value.

The APS (Atiyah, Patodi, Singer) theorem for a manifold
with a boundary is discussed for the 0(3) & model., The neces-
gity of imposing non-local boundary conditions for the Dirac
operator is explained. The toron effects in supersymmetric 24
0(3) € model and 44 supersymmetric gluodinamics (SYM) may be
reconducted to fermionic zero modes (ZM). In the gauge theo-
ries (QCD and SQofor example), containing the fields in the
fundemental representation (guarks), the situation is guite dif-
ferent. The unbound resonances of the continuum at A= 0 play
& crucial role in this case.

The contribution of toron configurations to chirsl conden-
sates (@@>, < A%> in SQCD is celculated and it is consistent
with the Konishil snomely. For the fermion coudensate in QCD ol

(with Ne= N = 2) we find ¢ #¥)> =-z‘-ex,aﬂ;4;gf,9f/ff/f’='ﬂ¢??5?

The U(1) problem and @ periodicity puzzle in QCD are also
discussed.

—

1. Introduction.

At this time the best-known example of nonperturbative
fluctuations is the instanton [1, 2] The integral nature of
the topological charge Q is in fhat cage related to the com- -
pactification of the space to a sphere, i.e. with the iden-
tification of all infinitely distant points. The choice of
other boundary conditions could result in fractional topolo-
gical charges. In particular, in gluodinamics with the SU(N)
gauge group, the introduction of so-celled twisted boundary
conditions [3] permits new solutions of the classical egua-
tlnns——tnrnna [4,5] with Q = K/N, K = 0,1... and with action

(3:? 4%;);{ 3

What physical effects arise due to fluctuations with
fractional Q7 These effects appear most glaringly in super-
symmetric variants of a theory. In particular, in supersym-
metric Yaug-Mills theory (SYM) with SU(2) gauge group torons
ensure spontaneous breaking of discrete chiral symmetry. In-
deed, the model possesses naive U(1) chiral symmetry with res-
pect to the transformations A% exp(ia) A% ( ﬂq is
gluino field), which is broken by the anomaly a Q'l..-""s's" « Ho-
wever, under this transformation the discrete aymmetry 32132
is conserved. As was shown some years ago, the 't Hoeft's
torons [4] generate the condensate < A*> and break this sym-
metry down to &, [6] However, the standard guasiclassical
calculations uf ¢ 22> [6], based on the solution [4], are unre-
liable because solution [4], defined in a box of sizer Ip,
exists only if the ratios of the sizes Lrg gatiafy certain re-
lations, and constant g{lf*-ai-*ﬂ“ becomes too large for the
correctness of the gussiclassical calculations. Moreover, the
introduction of fields in the fundamen tal (rather then andj-
oint) representation is rather difficult because of special
(twisted ) boundary conditions. Therefore Phe't Hooft's solu-
tion can be considered as only an illustrative example with
fractional charge.

Nevertheless, we believe that solutions with a fractional
number may play an important role in the theory, but these
solutions should be formulated in some way other than the 't

Hooft's solution. As will be shown belou, our solution can be
formulated .n a manifold with boundary and may be understood
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as the point defect. This solution admits tae introduciion of
the fields in the fundamental represe tation. Sa, our solution
can be used for consideration of interesting physical theories
(like QCD) as like as of SYI.
f;f us remind that instantons give zero contribution

to <AY> in SU(2) SYM and can ensure nonzero values only for
' the correlator < 2°(x) 4°(9)>[7,8]. Indeed, in this model there
are four fermion zZero modes per an instanton (Z.M.}. It means
that one instanton transition is always accompained by emission
of four fermion fields and thus < A°(*), A%(0) > #0 , By clus-
tering,this relation implies & non-vanishing <A*> condensate,
in agreement with the value of the Witten index [9], which equ-
als two and in agreement with rigorous resulta of Ret [10].
However {lzkinstantcn= 0 because we have four (not two) zero
modes. It is obvious that we would get < 2 # 0 for solutions,
which have 2 Z.M. But the toron solution with Q@ = 1/2 has just
two. ZM So, it is the main reascon for considering fractional
Q in supersymmetric theories. In ordinery (nons-upersymmetric)
theories (like QCD) the solution with fractional topological
number should play: an important role (in the solutiou of the
U(1) problem and @-periodicity puzzle) tood, as was shown some
years ago [11,12].

The paper is organized as follows. In Sec.2 C(3) § model
is formulated in terms of various fields: the unit vector field
1, a=1,2,3, nﬁhan1; the complex field 5% , the unit complex
Spinor iy, o = 1,2, utu=1. The various formulations help to
understand different aspects of the configurations with frectio
nal Q. In this Section the toron solution is formulated and the
interpretation of this solution as the point defect is diascus-
seds In Sec.) the problems of guantum fluctuations, surrounding
the classical solution and the re;uirementa for gselection of
"right" modes are discussed. The APS theorem for manifold with
a bauhdary is formulated and the necessity of imposing non-
local boundary conditions is explained. In. OJece.4 the stabili-
ty of toron configuration with Q = 1/2 is proved and the cor-
responding contribution to < ¥¥> is calculated. Then, in
sections 5 and 6 the corresponding construction is generalized
to gauge theories., For this purpose the self-dual eguation for
gauge theories will be formulated on the langusge analopgous to

**_______f______—f———————————————————————————————______________________________T___________________________________________.

Cauchy-Riemann condition for the 0(3) & model. The contribu-
tion of the toron configuration to gluino condensate <A* in
SYl. is calculated. In Sec. 78 the very important ?uastinn,
concerning the introduction of the fields in the fundamental
representation (guarks) to gauge theories is comsidered. Well-
—understood supersymmetric QCD (SQCD) model presents a perfect
theoretical laboratory to help understand the role of funda-
mental representation fields in gauge theories. In this case

a lot of various results is kmown (dependence of condensates
on m, and 3 ,'the Konishi anomaly and 80 OW...). Our approuch
iz in asgreement with these general results. _

After that, in Sections 9-11 we pass to the analysis of
toron caleculation in QCD. The contribution of the correspon-
ding configurations to chirel condensate is calculated and
itfeguals to < P¥> =-7iexpd W2 f 2" A% al rf=r{~£ . 1t is our
main result. The nonzero value for < ¥¥> ig obtained becau-
se of juasizerg modes of guarks.

This property of the spectrum of Dirac operator is the
important feature of configurations with fractional topologi-
cal number. In Sec.10 the pseudoscalar correlation function is
considered end the pion pole is obiained in agreement with the
Goldstone theorem. In Sec.11 the U(1) problem, the anomalous
Ward identities and ©=-periodicity puzzle ere considered from
the view point of toron calculation. As is well-known, in any
consistent mechnism for chiral breaking all these problems
must be solved in automatic way. The calculation of the corre-
sponding correlators will provide a valuable consistency check
for our approuch.

Thus, in Sections 2-4 we comsider a simple 2d 0(3) & mo-
del as sn illustration of genersl approuch %o fractional Q.
Then, in sections 5-8 we test our calculations in supersymmet-
ric theories, where many different results are knowh indepen-
dently. Gaining some experience with _toron calculation in a
simple models we consider in Sections 9-11 the theory of had-

rons, QCD.
*

2, Torons in 0(3) © model,

Before describing the toron solution we discuss the dua-
lity eguations and the iaﬁrangian for the ordinary (not su-
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persymmetric) 0(3) ¢ model. The modification due to intro-
duction of fermions will be considered later. The action, the
topological charge and the eFuations of duality have the fol-
lowing form in terms of the fields =n® [1] :

g=é/ﬁ@'ﬂy3}- ,»;ﬂ?-ﬁ‘?_-_(;'a?_-ge,s_;/q;ge

(1)
@ - g7 J7¥ Eqﬁﬁ“*’ ”?'rﬂfc?:ﬂc A
A e Vo

Here f is the bare coupling constant. :

To avoid the complications due to the constraint n®n® = 1
one often introduce (see, e.g. the review, Ref. [13] ) in pila-
ce of the three fields n® which live on the unit sphere, two

independent fields, ¥} -and % , by means of streographic
projections

ae sl
P‘f % /#9 gf}t R 5 (2)
24 L% -8

it i

Next one combines % and (rfi into one complex field

5"7=5‘f+"@. and introduces the complex variable =F :,l;.fr’.k’_f_,
and then reformulates Eqa(1) as follows:

S =f./r',f—;'g—a~ %%’7'?4%’77 (3)

% nw%a®

Jk o
-4 frden (121 /3
Pl maprih, B =Kk, O0e Bupiy |

2 =53 = £(3 %), -£(%+ %)~ Vo5 .

]

We ke the term "toron", introduced in Ref.[4], for :
self-dual solution in the 0(3) ¢ model and in gauge theories v
(Sec.5). as well. By this means we emphasize the fact, that the !
solution minimizes the action and cerries the topological Q=1/2,

i.e. possesses all of characteristics ascribed to the toron r[4].

We keep the term "toron" despite the fact that our solution 1
fornu?g;ted in principle in enother way than in Ret . [4]. .

As can be seen from Eq.(3), the duslity equations have their
simplest form in the ¥ -language. So, the any analytical
function Gcl.{Z} is the solution of the duality equations (3).
Regarding topological ideas, it turns out that for the
closest analogy with gauge theories we need another formule-
tion of the 0(3) & model in which local gauge invariance is

present.

Namely, we define the action, the topological charge and
the equations of duality of cpl-
theory, equivalent to the 0(3) 6 model, as follows f14):

5 'j fﬂ"ﬁ’/gﬂ atf.z/'i -.Z'l/q = a., :HJI}'«J ,fﬂ .-..-,'n:?,.‘ﬂ,gf/,agz

G iten s L b ag SEE
(Be /1) ot = > s Al

Here #7¢ is a two = component complex spinor, 4&1 is an
auxil dary gauge field. In terms of (4) local gauge invarian-

ce has the obvious form:-’

! Py ;.
nl = eCne , A= 4 +%uE (5)
Equivalence with the original formulation ig verified with the
help of the relations
M
: Ha {/ (6)
4 = ~a o L

F
where & = are the usual Pauli metrices. We note that the

duality equations are written in the spinor language Very
gimply:

2 (L )ag 1
oF A
That's why the classical solutions in the spinor langusge
Y. DO - (8)
ﬂﬁhglgr - 2L/ m) =2~
_ S

are determined by any analytical function P,(Z).
As can be seen from defemition of Q, Eq.(4), the topolo-

gical charge is determined by the change of spinor phase aro-
und the large countour:

| ; | 5
@ ~ j7 [AX Epw bt =;§;”-j.,a/;, R A )
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nlksee ) =2, exp (8 =const, %{xa:ﬂ);ag

The standar:.’ instanton solution in this language takes
the form:

A (2) = e £ + Val2-2)
12/ = [ 1p1?s f2-a/3 e

Here %% and &/ arethe unit constant spinors; *_P ‘and 8"
are 4 free parameters associated with translation and scale
invariance. Because n,/n,= pz,f’p,i depends only on Z, accor-
ding to (7), the duality equation is satisfied. Purther, af-
ter traversing a large contour the spinor acquires the phase
27, which in accordance with (9) corresponds to Q = 1.

We pass now to the analysis of toron solution. It is not
hard to see that the action is invariant not only with respect
to global 5U(2) transformations, but alsc with respect to lo-
cal U(1) transformations (5). However, the group transforma-
tion is not simply SU(2) x U(1), but G = SU(2) x u(1)/%,, so
* that 3’?{5‘)”2:2, « This last circumstance is connected with
the fact that a simultaneous transformation from the SU(2)
group of the form exp(ﬁﬂ'%) and rotation exp (/7/ by ang-
le 7~ from the U(1) group leaves the form of the fields unc-
h.a:‘ged. Consequently the corresponding transformations should
be identified with unity. This means, in turn, that the theory
admits Q = 1/2 and consequently (as will be seen below) multi-
valued functions eppear in the description of classiecal solu-
tion. A geometric interpretation of this fact is given below.

A3 18 easily verified,the toron solution with Q = 1/2,
is & double - valued function. Indeed, as was discussed above,
we admit a larger class of solutions. Namely, upon completion
of the coutour of large radius, we allow the appearance of an
overall factor exp(/763)=-( ., Taking into account that a
factor (~1) arises due to analytic functions of the type # Ve 3
we arrive at the following form of toron solution :

: ¢ _q/)f'ﬁ -f‘;‘é"
278, = ﬁ? /h?ﬂ/*/f"f//‘ % i,,af/x’g X. %{f‘éﬂ éj/ﬂ}

This solution is defined on two Riemann sheets; rcal physical
space corresponds to but one of them. Purther, it is easily
seen, that the duality equation 3 (/,,)-C is automati-

Z’;'{;d:p
y:ﬂ:z#n =L

(10)

8

cally satisfied.

We note further that the solution (11) is defined in the
limit @ »b. In terms of the field = "/ ,£3(6), the
solution (11) corresponds to the function ¥= & (%’—j) i
with a cut, tending to zero as a - b, i.e. in terms of the
field ¢ +the limit a-> b means reestablishment of the
single - -valuedness on one physical sheet.

If one sets a=b from the very beginning, then

Mop ={:§/},” ar;w"f/ (12)
corresponding, accorging to Eq.(5), to the gauge rotation of
the empty vacuum solution. At first sight this suggests that
such a solution can not lead to physical effects. As will be
shown below this is not go. In particulary, in supersymmetric
0(3) 6 model the solution (11) ensures nonzero value of the
chiral condensate. Analogous behaviour arises in the calcula-
tion of the 't Hooft's toron contribution to the gluino con-
densate in supersymmetric gluodynemicse. Although to the toron
solution [4] corresponds a field strength g?“,~131’ which
tends to zero everywhere in the system with increasing size,
L+ = ., the condensate turms out to be finite fﬁ]- '

We return to the analysis of the solution (11). To this
end, instead of Eq.(11), corresponding to the boundary condi-
tion (12) ( @="2/u> L ) as |3l>o° , we consider the Bu;.‘ution'.

bm (oo )ZE" ey = lim —— ((i:fi
2 (*"L ) " asoVials (o] \ B

satisfying the standard boundary conditions wiz» "“}’*9 and

differing from the original by an overall rotation.
The toron solution (13) is defined on manifold with boun-

dary, fig.1. We can to cousider the. conformal mapping

PR - (14)

(13)

In this cese, physical space is half-plane with boundary m
'§=D, fige2, If we consider the conformal mepping

: ' 2 (15)
AtiZ
ok T




from half-plane to the disk with radius R, fig.3, the phy-
sical space corresponds to this disk R. We may then define
the theory on a disk R and take the limit # * ¢2  on the
final stage of calculation. The toron solution in fhis inter-
pretation is smeared over all space with size £ and in
this sense remind to us the 't Hooft's solution [4]. On the
other hand, we may define the theory on the exterior of small
circle A , fig.4, and take the limit A » O on the final
stage of calculation. In this language toron is the point de=-
fect at A > 0 .« In any case, the toron action equals S el ™
= 7/# end does not depend on dimensional parameters R, A
due to the classical conformal symmetry.

Thus, the description of the toron solution with fractio-
nal topological number on manifold with boundary is not so
hard. The only problems which arise are: Is this solution stab-
le? Is the toron contribution to<(¥¥> finite after the limit
A>O ( £3<°)7? To answer these questions, we have to calcu-
late the toron meaaure and condensate (Sectious 3,4). However,
before calculating tha toron measure, we would like to note,
that the solution with any fractional number can be described
on manifold with boundary. But only Q = 1/2 is stable at the
quantum level, (for SU(2) group). Just for this value the cor-
rect rennrmalia&tiun—grﬂup dependence is resfored.

There is an alternative point of view on solution with
fractionel number, It is connected with the consideration of
the orbifolds [15] or ordinary non-singular menifolds [16].
We wouldn't discuss this question in a more details below be-
cause our starting manifold, fig.1, is B more suitable one
from the technical point of view. However we would like to
note that the parametr A -+ © which presenta in the defeni-
tion of toron solution (13), is interpreted as regularization
("blowing up" in literature) of the fixed points of the orbi-
fold (see Appendix of ref.[15] ). The analjsis of toron solu-
tion on a disk R, fig 3, is discussed in Appendix A.,of this
peper.

In conclusion of this BECtiﬂﬂEﬁDulﬂ like to describe the
beautiful analogy between the toron solutions and dislcocati-
onsg in solid state physics. If we denote by &:(x) a displa-
cement of atom placed at the point x of the erystal, and by L
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a loop surrounding the point x, (the place of dislocation) then
B, - f 25 e = & (16]

Here b, is & lattice vector. (see, e.g. [17]). For such Uy(x)
it is said that we have a dislocation located at x,. This
means that the multivalued functions appear in the descrip-
tion of the dislocation. Therefore, we have to account for
jumps in U;(x). However the physical values (the tensors of
strength and deformations) are single-valued. Usually, for
description of dislocations the ceriain fictious & -like
singularities are introdused. They ensure the necessary jump
in Ui(xJ I1T].

In the present toron calculation we prefer to describe
the solution in two Riemann sheets without introdusing ficti-
tious & -1like singularities. The gauge inve-riant values
(in particular , the action density) must be single-valued.
Namely this requirements single out the value Q = 1/2 as com-
pared to other fractional values (see next Section).

It is obviously, that the situation, which described abo-
ve for the dislocation, corresponds to line defect which is
determined by vector b, (16). In our-case the vector analo=-
gous to b is orthogonel to physical space and so the toron
defect is the point defect with finite full action.

Really, the evaluation of the action (3) in the ¢ -field
terms for the solution (13) is guite simple:

: e g Ay S 2y
¥, e o (1@¥/* /’5"’3/ T am

- Fede. _ T
/ it ﬂ»//,@ffff“@//'z T F doppargpr

N o=

As expected, the classical action has decreased in com-
parison with instenton value by a factor 2.

The analogy between the toron solution and dislocation
allow us to interpr—et the a- reguiﬁﬁltion from the latti-
ce point of view. In this case, as is well-known [18], in or-
der to account for the periodicity of the action one has to
introduce a set of vortices into the system (it is just our

11



point-like singularities). To describe this singularities di=-
rectly in the continuun theory one needs some prosedure of
regulazation. In particular , we can consider the lattice re-
gulazation or some generalization of starting theary*.

If we use the lattice regularization, then & cut in the
complex plane is appear in continuum limit with the branch
point at the position of the vortex [18]. It corresponds exact-
ly to our f13.1.

We prefer to use the A -regularization, which preservs

the duali ty e?uatinn at finite value of A (not only in the
limit 4 > 0).

3. Evaluation of toron mékure.

We pass now to the analysis of guantum fluctuations,
surrounding the classical solution (13). As usual, for the
quasiclassical calculation it is necessary to expand the field

M (X) in the neighborhood of H.z(¥/(13), keeping only the
quadratic terms in the action. The resultant bilinear form re-
duces to the following expression:

S= g » Jau 0 Myp 75

(18)
f%-,& =
- Map = g s Xﬂz"' /d:/& SRy o
J:-/;,,(pﬂ =2 2 ot = {';"?ac)cﬁ # O Mo ; J'D "cl’f:ﬂr"-"j‘"L (E'J
Here O/ is the sm-all quantum fluctuation and /4 (2) ig

the classical toron solution (13). The supplementary condition
d}&.ﬁhg@j = 0 18 due to the constraint = %t = 1 , This

supplementary requirement can be satisfied with the help of the

vector Z« , which is orthogonel to the classical solution

[23] : ==

3%
B = BJeE wniz T MBS S,
z-zntzé“"-(, f;%tzaé?ﬂjgmﬂ

For example, the compact QED can be obtain from Non-
=Abelian e thﬂury. All heavy fields can be viewed as a re-

gularization of - -photon theory, whi
regularization [1B R ¥, which replaces the lattice

12

Without loss of generality we set a=0, & = 1, In the fi-
nal relations the corresponding dependence can be easily res-
tored by demensional consideration.

For the further analysis the following change of variab-
les is crucial:

é=.-"f=7/‘f W=M@?£ “_{-fé‘{’.f agifﬂfz.? (20)
/ZrL ’ ’
The meaning of é WK ig obvious - they are corresponding
coordinates of the sphere obtained with the help compactifi=-
cation of the complex plene Z with boundary (fig.1) into the
sphere S with the cut joining the norih and south poles. In
terms of the variables é . the bilinear form (18) beco=-
mes the well=known equation for d-functions. Really, substi-
tuting the expressions (19), (20) to Eq.(18), we obtain the
following blllnear fﬂrm. -

Sefw-t f“g/‘;@ ’”/ /"Z/a‘;a 7 '93’7? (21)
- 7 g~ #iletisiy =408 3[fF

Let us note that the standard requirement “Gnﬂlﬂts Ef gingle-
valuedness of the physical modes on the manifolikhﬂundary
(sphere). Now it is not the case because our manifold has a
boundary, fig.1,'and lines ¥ =0 and %¥=2& are not iden-
tified, However, as can be seen from the expression (13) the
toron solution is defined on the two Riemenn sheets with cor-
responding identification. That's why the polar angle depen-
dence must be the following:

g gffoz’ﬁm %_/Zj m=ar . . (22)

As will be shown below, exactly this behaviour ensure the re-
qular solutions, The dependence (22) can be arrived in another
way. We can require the regularity of the modes P and this re-
quirement is satisfiled precisely by Eq.(22). Taking the eq.(22)
into account we obtain the following eguation for the eigen-
values:

/ (’(2/'&2-‘ +£/32 /—f?’ 3/)?1*3/ -2 (E#- %’/#&(23)
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The regular solutions of Zq.(23) are well known (see, e.g.[24])
and lock as follows:

Faxpfimpgla?®’ (3) | Acyly*3); mj=at-. . (2)

As usually, similar calculations should be carried out
for the vacuum field, i.e. for (Mje = ¥x (for definiteness).
In thet case the eguation for the eigenvalues is determined by
the standard angular momentum operator:

< = 2
/ (7¢ _%fz *Yoy * ;‘?—f/dwﬂ = A,

Sy = the exp S TS L ()
A=J1l6*) , /= 4r... 8o (P fogp = 2 2 = .

Anticipating events, we also formulate equations for fer-
mionic modes in susy 0(3) & model. In the quasiclassical cal-
culation the addition to the action is determined by th: expres-
sion [20]:

(25)

(26)

d,S;_ = fdi’ ;“R. Lg? LVF {E. [Hd}tf. =

Lip = 1 (E., - PLE"-’*)[ G_{P“(fﬂ]
= ! P (P12 l%';?"]‘?!‘ o

Here Y, = (ﬁrﬁ/ is two -~ component spinor, belonging to the

fundemental representation of the global SU(2) group.

We shall not try to :oive the gp.(zﬁ), instead it will be
demonstrated that each bosonic mode (with A # 0) is necea-
sarily accompanied by two degenerate fermionic modes. Taking
into account the structure & ~ fd crth&gcn&l to the classi-

cal solution ( #a/.f , we obtain the following equation for
the fermion eigenfunctions:

e /;/ PR )~ AF
= al i o
o  Fa : /;a;é/'? D /AL, = ;17/-"%

It has two solutions- this fact immediately stems from e¢.{23}.
Indeed, the first solution

(27)

o ~wtL L [T 2

14

—#—L—

corresponds to A =+Vdp while the second one
— £

o ,é“'yé;‘f;iﬁ?fwﬁ'
corresponds to ﬁ:v-/f§;1. The two-fold degeneracy of the
fermion modes is ‘the consequence of the f; invariance of the
model; the boson-fermlon degeneracy reflects the supersymmetry.
Hence no sufprise that the fermion contribution coincides with
the boson one and they cancel each other. As a result, all
non-zeroc modes combine to give unity in functional integral.
Up to now we considered the e?uatian for the eigenvalues only
and our discussion of eigenfunction (24) was independent of
supplementary requirements applicable to them because of exis=-
tence of boundary. But it is obviously that only some of them
must be taken into account. Indeed, the different eigenfuncti-
ons(24) are nonorthogonal to each other on one Riemann sheet
{on the physical space with boundary) and they will be mutual-
ly orthogonal only on two sheeits, The another explanation is
following: =ince eigenvalues of A  for toron (24) and instan-
ton solution [23} coincide, the degrae*ﬂf degeneracy must be
different in toron and instaenton cases . So, only some (not
gll) eigenfunctionsmust be taken into account. It is obviously
that all these problems are connected with the boundary of our
manifold. .

Now, we want to formulate the criterion for selection of
modes (24), which must be accounted. Besides that, we consider -
the zero modes only due to the cancellation (of fermion and
boson non-zero modes) which is mentioned above.

The simplest way to understand the requirements applicab-
le to modes is to consider the 0(3) 6 model in terms of un-

constrained Y-field (3). In this case any supplementary re-

quirements fn.tPe modes &Y , due to ¢onstraint are absent,
ripes
and -fief@iexactly the physical degree of freedom (the lo-

cal gauge invariance in this language is absent). It is well-
-known [13] that the normalized zero modes satisfy the equa-

*If it would not be so, thé toron and instanton mesures
would coincide and we would obtein the wrong answer.
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tion, which is just the Cauchy-Riemann econdition:
Py Lg""?ﬁ}z‘
e
(1+ % Pu.)
However, an arbitrary analytical function is not yet a zero

mode; only the functions also satisfying the finitness con-

dition [25] e .

(1+ D0y \*

(28)

2Be)=0

= wnajt- (29)
220

are acceptable.
In particular, for instanton this requirment is satisfied
precisely by two complex modes (four real) [13):

% s R R e Lo (30

in according with 4 (2 complex) free parameters (10) P .
associated with the collective coordinates of instanton., We
also note that the normalization integral (28) diverges loga-
rithmically for the mode &W, ~ 2 for large Z. However as
noted in Ref.[25], this fact has no effect on the physical con-
tent of the theory. We shall run into analogous behavior also
in the case of torons. Usually, the infrared regularization is

achieved by introduction of the factor [ED-EEE 23k | :
2)-4 S @12 n*d% _
—-D-*"(i*'é‘z) : ﬂ l-ﬂ . { (31)
2 S+ Wiy )

In this case two extra normalizable zero modes Sq% ”'i-mmuld
arise. However, similteneously the vacuum amplitude would ac-
qQuire the same two zero modes. Since the instanton amplitude
is always normalized to the vacuum emplitude (see above), the
effect of the two extra zero modes would cancel out. Consequ-~
ently the number of nontrivial zerc modes in the instanton
equals (442)-2 = 4 as before (30). The number of nontrivial
femion zero modes in SUSY 0(3) 6 model i@ﬁnstanton field
coinsides with the number of boson ones and eguals four. This
is because the fermion zero modes satisfy the same eguations
(28). Moreover, the number of the fermion zero modes is knowm
beforehand, from consideration of the exial anomaely and equals
4. (two complex zerc modes),.

Collecting all factors together we obtain the following

expression for instanton density in supersymmetric 0(3) & mo-
del (13, 207 :
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é?hﬂit{ ﬂJ‘?ﬂpéi;fgygﬂé"ﬂ/fuwﬂ?-ﬁgéJr EEQ
In obtaining (32) we took into account the fact that the non-
zero modes contributions cancel between bosons and fermions,
The factor exp (—z%%h/ is conmnected with the classical
action; dzad_p corregponds to integration over the four col-
lective varisbles, mentioned sbove; Mﬂ is the regulator con-
tribution, corresponding to these four zero modes. Further,
each complex fermion zero mode is accompanied by the corres-
ponding collective integral @& and regulator contribu-
tion M;t As was expected, there appears in E?.{jzj the renor-
malization - invariant combunation:

m* = M exp &~y 5 (33)

(32)

We have on purpose analyzed in detail the instanton zero
modes and the requirements applicable to them., In the next the
corresponding criteria will help us choose the "correct". zero
modes in the case of the toron.

We return to the anslysis of the zero modes in the toron
background (13). In this case zero modes satisfy the Eq.(28)
as well., However, the only function satisfying finitness con-
dition (29) is:

Fg ~ 2! (34)
in according with two free parameters "ff{"r:-}), agsociated with
tranalatinnﬂ.*
Only this function is acceptable. Although this mode, like
in the case of the instanton, is logarithmucally divergent
for Z-3 o= , this faect has no bearing on the physicel con-
tent of the theory (see Eg.(31) and corresponding discussion).

*We remind that the parametzr A is the regulator but
in does not has a sence of collective coordinate. The analo-
gous situation is seen in 't Hooft's solution [4], where
parameters Lm (the sizes of the box) are only regulators
buf are not connected with the collective coordinates,
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In the fermionic sector, as explained above, the number of nont-
rivial modes coinsides with boson number and equals two in

the toron field.This number - two (one comlex mode) - is in
agreement with axial anomaly condition and is known before-
hand. Indeed, the decreasing of the mction (and topological
number) by two times, we see the multiplicity of admigsible
zero modes decreased twice as well as it should be.

If we were interested in the 0(3) 6 model only, this
would be the end of the story, because we can now find the
toron mesure and calculate the chiral condensate ¢¥#¥> ., The
result turns out to be finite (see next Section), because the
toron solution with Q = 1/2 changes the chiral charge by two
units and has two zero mcdes. Therefore the corresponding va-
cuum transition is necessarily accompanied by the production
of ¥¥ pair as it will be demonsirated by explicit colcu~
lation.

However, our main purpose is to find the criterion for se-
lection of modes in the formulation with local gauge invarian-
ce and fictious degree of- freedom.

For empty space the zero modes correspond to j = 0 (25)
and have the multiplicity £ =2 (two resl modes). For the
toron, zero modes correspond to j =0, m = ,0,12 (24). Ho-
wever, only two of them ( m = 0,2, OQ = 4 real modes) are ortho-
gonal to each other on the physieal space:

Al ~tad)] o L (18 (35,0

@) A g Lty [1eS]ex /(P
o b ¢ bt b Recs) (35,b)

S [y AT IR = 0 2 Ot <O

(On the two Riemann sheets three complex modes (m = 0,1,2) are
orthogonal) . :
Conseguently, we choose from the solutions (24) the ortho-
normal set of eigenfunctions. Roughly speaking, for large j
this reduces the degree of degeneracy by the factor 2 as com-
pared to the instanton case, and this fact automatically en-
sures the correct renormalization - group depandence, see
Ref. [15]+ The enother requirement of reqularity is satisfied
by solutions (24) in the form of d-functions.

Collecting all results together we obtain that the number
of nontrivial zero modes in the toron field equals 4-2 = 2
(for the instanton 6-2 = 4, see discussion after Eg.(31)) in
agreement with the number obtained before and in according with
two free parameéters associated with translations.

The forms of zero modes in ¢ -lauguage and in % -lan-
guage sre in agreement with each other. It is can be checked
with the help of Eq.(6). Upon substitution of 2= (Mujel +&7
and Y= Bgp +8¢ we arrive at the following connection
between the modes & A« in terms /% =field (4) and the mo-
des &8¢ in terms of the ¢ -field (3). '

é“ﬂ,l (Mc)e = s (s ). ' (36)

(Piefez.
When we substitute explicit expression for ( 57%{} from (35,8)
we obtein $% ~ 1 and from (35,b) we obtain &% ~Z” ip
agreement with the results obtained before.

Our problem, however, was not the deriviation of toron
zexro modes by yet andther method. Rather we wanted to demon-
strate the important criterion for selection of modes, which

SY =

must be accounted in the formulation with local gauge invarian-
ce., Namely, the mode &4, ~ z! in ¥ -language is single-
valued, but the same mode (35) is not single-valued (because

of the factor Z.'2& in ta ). However the gauge - invari-
ant value &/, $ Ny is single-valued.

The lesson from this is ns followa: only gauge - invari-
ant values in the theories with extra degree of freedom must
be singlewvalued. Namely these modes have a physlcal sense.

The fermion modes in /% -language can be obtained by the sa-
me way and they satisfy to the same requirement.

lMoreover, this result can be understood from the Jiffe-
rent view-point, namely, from Al’S—theorem for manifold with
boundary[26]. The necessity of imposing non-local boundary
conditions for calculation of zero-modes number is well known
[26,21]. The global boundary conditions must be imposed so
that Dirac operator LJ{F(QS} is self-adjoint operator on ma-
nifold with boundary. Since Lup  is the first-order dif-
ferential operator, the self-adjoint condition has the follo-
wing form for arbitrary Y., 'ﬂz [-26,2'?3 :
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Here J dy is the integral over the boundary. In particular,
for manifold of the fig.1 , the global boundary condition has
the form:

= =
A = 7 -f/ rHC=C . (38)
é/ t( /42#’ /;ft (}& ﬁz/?’-c? . A

o
If the gauge- in-wvariant velue % %% on the upper edge
0of the cut coinsides with the value on the lower edge, then
the Eq.(38) is satisfied. But precisely this requirement is
formulated above for the gauge-invariant values from different
viewpoint.

Thus, from the various points of view (APS index theorem,
the analysis of CP' model in terms of the unconctrained ¢ -
field) the criteria for the choose of the "correct" modes in
the toron field was formulated. It turns out that these regui-
rements can be satisfied only for § = 1/2.Eesides, a few ques-
tions, such as, the single-valuedness of the gauge-invariant
values, the self - adjointness of the operator of (18): the :
orthonormality of the set of eigenfunctions are interconnected
in the formulation of theory on & manifold with boundary. Mo-
reover, the configuration with § = 1/2 is stable at guantum
level, as will be shown below.

4, The stability of the toron solution and the calculation
of chiral condensate in SUSY 0(3) 6 model.

In this Section we prove that the toron configuration with
Q@ =1/2 is stable under quantum fluctuations and toron topo-
lngical charge is conserved. With the above consideration ta-
ken into account (concerning the stability of the solution,
the number of zero modes and S0 Oh...) the toron measure will
be obtained and the correponding contribution to CFF> will s
be calculated. The degenerate ground states arising from non-
-anomalous discrete chiral symmetry (see introduction) will be

S - T
The analysis on the manifold of the figp .3 (disk R) is
dizeussed in Appendix i.

discussed. As is well known, instenton calculations yield the
average vacuum expectation value of a product of operators
over these degenerate vacua [28]. The toron calculations yield
the non-vanishing value of ¥¥ itiself. -
We return to the analysis of the definition of topologi-
cal charge Q(4) and rewrite it in the tollowing form:
@ =i STH v v =~ Yoy SAK Duts 8,77 Guo= (3,

=2 S S on) P S50/ L 22F(0,-12,)

Upon substitution of

. A 7
Vot = /P 77 ~/S W /2 + B/, (40)
Pl = £ : -4&5%; =d

where /2 (E?J ig classical solution (13) and 8y is any
quantum mode orthogonal to the toron solution, we arrive with
the help (39) at the following expression for & &

R-%+8@ - 5@~ ﬁi«/é‘/ﬁ*a@zﬁyj-,
:z%/%?-ﬁ 5/.5“7?.;/,?/,. 23/ sn. —5(37%“//_/‘

Ag it should be, the .5@ ia a full derivative and hence
reduces to a surface integral. The latter in turn vanishes for
the modes which satisfy to the requirements discussed shove.
Indeed, because & #x ~ fdﬁ“ (19) the 5’@ can be rewritten
in the following form:

5Q ~ fﬁ{.‘é[ﬁ?@ﬂﬁ{?-@[ﬁ%{ﬁtH]_-( +33(F":5 E)} w2

Now it is obviously, that the EQ = 0 Eeeauae nonsingle-va-
lued structure m'fd-vfi' 1s absent in the expression (42) and
functions F are well-defined.

(41)

We pass to the discussion of toron measure of supersym-
metric 0(3) 6 model. As is known, supersymmetric models
differ conveniently from ordinary ones in that only zero mo-
des need be considered. In the bosonic and fermionic sectors
we found two non-trivial modes, writtem in the form of one
complex mode (34). Collecting all factors together we obtain
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the following expression for the toron density in the model:
F e = Ay o DA
Floren, " M A BT arp [ 4 e

Here the factor ,¢433f§z. is due to the single caﬁlex bosonic
zero mode; Efii' is the corresponding integr&ﬂﬁver the collec-
tive variable; the factor ﬁfiﬂﬂhé is connected with the sing-
le complex fermion zero mode; lastly, exp (-”?Gﬁ/ ig the
contribution of the classical toron action. As in the case of
instanton (32), the expression (43) for the toron mesure has
precisely the renormalization - invariant form. It is easy to
trace this phenomenomn: while the action is decreased by a factor
two, the number of zero modes is decreased by the same factor
which exactly restored the correct renormalization - invariant
relation (33).

Now all is ready for the calculation of the chiral con-
densate <¥%> in the model. Substituting in place of ¥
their zero modes, and recalling that integration over the col-
lective fermionic wvariables exactly satigsfies .fEiﬂfﬁﬁ =1,
we verify that

< Ps=2/F¥/Ps=0> =”’f/ﬂ’% El-a)tle-al= 27C  (44)

where ¢’ is the calculable numerical constant. In the last step
we used the value of normalization integral.

We note that the instanton can only ensure a nonvanishing
value for the correlator < & ¥i(x/, P [13,20_], in accor-
dance with the fact that the solution with Q = 1 changes the
chiral charge &QE by four units. The toron solution with
Q = 1/2 changes the chiral charge by two units and has two ze-
ro modes. Therefore the corresponding vacuum transition is
necessarily accompined by the production of a - ?’?“’ pair, as
the expldcit calculation of (44) also demonstrated. Because
the transition amplitude (44) is nonzeroc and because the toron
tunneling process changes the chiral charge QS by 2 units, the
true physical states /JZ2;> must be the superposition of the
states KQ5=E]>, KQ5 = 2> [?9:91 page 2911 :

[ R;> 27%71'//@5"0)' +/@Pr=2>5/ (45)
[ R> 2 (@05 - /Pr=25)

FJ
Mg

-

The construction of vacuum states /R:> from /Q.> eigen-
states is very similar to the standard /&> ~ZT exp(7&//#>
vacuum consideration, but now there is only a finite number of
VACUS. ' i

Now, the guantum numberas of vacuum states /QS‘;- are sui=-
table so that appropriate linear combinations of the states
/J2!> (45) would be the two vacua of spontaneously broken
discrete chiral gymmetry:

SR [ F e | 2:> = CxPUTR)CGe=2]% %) @=0> = P1CEPl 46)

4s is well known [9,13], the nonvanishing of the condensate
(46) indicates spontaneous breaking of discrete chiral symmet-
ry: ¥ L W which does not take place in any order of
perturbation theory. This agrees with the wvalue of the Witten
index which equals two ],-91. We would like to remind that the
instanton calculation gives an average over these vacua [2d]:

& (x) =< PH), PHI, | = Ly [cadeviao] (47)
2 k=D

lioreover, each vacuum gives one and the same contribution to
(47). That's why the nonvanishing result in instanton calcule-
tion can be obtained only for special form of the Green func-
tion, in particular for (47). The result (46) in this case can
bi@btained by the exctraction of the square root.

Let us discuss now the /& -dependence of the <¢¥Y¥> conden-
sate. The & -term in the lagrangian has the form:

Lo
b = 556 Eur s (48)

Let us rescale now the field % and introduce a new field

' Ziol

Yo = @7
Then due to the anomaly relation
= e
TG = Fgy Cuvlpr , O = PLLY

the & term in the 1ograngia;r1 for ¥’ will disappear pro-

v:}ded that of =- 5/?’ - Hence, the # -dependence of the star-
ting condensate (46) is:

& ., s e

< FVade =rpli %)< Z¥ds.p (49)
Now, the & evolution from & =0 to & = 27 according to
the law (49) renumbers two dezenerate states (46) with sponta-

neous breaking of discrete chiral symmetry. An analogous situa-
tion has been obzerved previously in QCD with -“V';i flavours
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[11,12] and in SYM in Ref.(10] and will be discussed in the
next sections.

In conclusion of this section we would like to note, that
the corresponding construction can also be generalized to cpi-1
theories, For supersymmetric variant of the GPH-1 theory one
can also calculate the <¥¥> condensate in complete analogy
with the calculations discussed above in the 0(3) 6 model
[30]. lMoreover, it can be shown (by the method wich will be
discribed for gauge theories in Sections 8,9) that the constant
C (46) equals one in agreement with the instanton results [20].
Anticipating events we also note that the analogous calculati-
ons in gauge theories (SYM, SQCD) do not coineide with instan-
ton results [28] and difference is equal to ﬂ4f5'{see Sect.8).

22

A

Appendex A

The main goal of this Appendix is the formulation of the
toron solution in the CP1 theory on a disk. The disk, as the
manifold with boundary, is intensively discuss in the litera-
ture fEf] for an&lgsis APS theorem [26]. So this manifold is
well understood and our describtion is the particular example
only of the general approach [27].

Ve find that the introducing of the nonlocal boundary
condition ensure the existence of the exactly one zero complex

mode in egreement with the result of section 4.

We begin from the consideration of Dirac operator (26 ).
Let us write the starting action in the following form:

145 e a
fdzdT (F, 'F;} (LD o){: ) =Sdi ds (r:I FE, + F,_L;Fi) (41)

E2

4 :;é -iﬁi#;":"/‘z : Z"‘= _"3, *_afr”zp{-i; r":'pf2=" /4 /i'/

In this case 1t is more convenient to study the eg.(4 1) by
considering the another complex wvariable O ( O is the
coordinates of the disc, fig. 2) and defining a new spinor

(£i42): Y, dz Y
‘ % dz|Ys FRRE)
Q:R‘:-ii—é E=E'=) L"ﬂ(ﬂa) JJ’#;F-‘-(H?DJ

2

It can be easily verified that the action (A1) can be rewrit—
ten in a new variables in a standard Dirsc form:

e < -RIZ
fdzk'] ({1 L; .L_ +-£:_.Lu]{t) : '[F‘l& =i :;D'Té \ (A2)

+ = p—
Ly ==23a +3a PP Lo T30 + 2w tn|P1®
Q=L{+:V=&\EYP(EA} D5 < 2 ’ﬂ.,;(t 5P; —3‘;}:&{3“‘3")
with gauge field ﬂ/q A /" ot i

ffp " Eﬂ.:r'au én /"‘/"?_, Ao ~A, 28,3, & for* (A3)

Let us note that the form (A2) still unacceptable for the
using general relations of Ref. [EI} because gauge fields
does not satisfy of the "radial gauge", where

A, =LA e 2y



The gauge transformation with the function A :
! i
N D-R ‘ gk (44)
-— e s - - — E
W T AF Tﬁ'h ) ';31 fia
provide us the form which just,is needed:

TR T L TR e (45)
4‘::“14; Arz-EAj ;4?—"2;;“‘?2 # = e +V

!

The number of zero (complex) modes in this case is defined by
general relation of Ref.[27] and eguals:

Koo, s [EA)]p =L (46)

. where [x] denotes the largest integer less than or equal to =x.
As it should be we have exactly one complex zero mode at any
R, in agreement with result of Section 4.
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