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ABSTRACT

A (24 1)-dimensional nonlinear dillerential equation
integrable by the inverse spectral transfiorm method
with the gquartel operator representation is proposed.
This GL (2, C)-valued chiral fields type equation is
the generating (prototype) equation for the Davey
— Slewartson and I[shimori equations. It coincides
with the nonlinear equation for the Davey— Stewarl-
son’s eigeniunction W ,s The inilial value problem jor
this equation is solved by the d- and nonlocal Rie-
mann— Hilbert problems method. The classes of exact
solutions with the functional parameters and exponen-
tial-rational solutions are constructed by d-dressing
method. The static lump solution in the case =i and
exponentially localized solution at w=1 are found.
Other similar examples of nonlinear integrable equa-
tions in 241 and 141 dimensions are discussed.
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1. INTRODUCTION

The inverse spectral transiorm (IST) method is one ol the most
powerful and effective method of the investigation of the nonlinear
partial differential equations (see e. g. [1—6]). During last few
years this method has been successiully generalized to the (241)-
dimensional case (two spatial and one temporal coordinates). The
discovery of the nonlocal Riemann—Hilbert problem and d-problem
method [7—9] has allowed to solve the initial value problems for a
number of the nonlinear evolution systems in 2-41 dimensions.
Among these systems are the Kadomtsev— Petviashvili (KP) equa-
tion [7, 10], the Davey— Stewartson (DS) equation [11—14], the
Nizhnik — Veselov — Novikov equation [15, 16], the I[shimori equa-
tion [17, 18] and others (see e. g. reviews [19—21]). General ver-
sion of the dressing method based on the use of the nonlocal
d-problem has been proposed in [22—24]. Recently the exponenti-
ally localized solitons for the DS-1 equation have been jound [25]
and their spectral interpretations have been given in [26, 27]. In
general, the (24 1)-dimensional IST method is now in an essential
progress.

In the present paper we will study the nonlinear evolution equa-
tion

(g — 03+ 0’gy) +aagg gt atoag,e g, —
—ag,g 'gc—agL '8+ (aCi+0iC) g=0,
aCy—03Cr—o3iag,g ™' —oagg™ )*=0, (1.1)



where g(x, y, {) is the invertable 2X2 matrix, C(x, y, {) I8 the
= s e oo T .Egi @:(1“')
diagonal 2X2 matrix f,= S Skt I e T
al=+1 and ((03g:—ag,) g "Vaug=0. It is shown that equation
(1.1) is integrable by the IST method with the help of the auxiliary
linear system

[ (a,gi —Gggi) =0, (1.2a)
ay ax
def o0 @ - E'z__+ ;_.f__g ri)xp'zu 1.2b)
A ("g Al 20E dx dy 208 dy HEY Gk : {

The operator form of equation (1.1} (i. e. the operator form of the
compalibility condition for the system (1.2)) is the quartet represen-
tation

| Ly, Le] =wiLi+7vels, (1.3)
where
—21*1. -‘?——5—20: i—i--f,l
o gg:’:.?x grrﬁy ;
- g ;
y2=| &, 03] E+guagy—aggx}g ! (1.4)
and

a=gosg:g "1, —a’gos(g,g” ")+
toaglge ' eg | +glaC,+0sCy) . (1.5)

In the paper the initial value problem for equation (1.1) is
solved for the class of solutions with asymptotic behaviour

x4y, t) T:'m] i
The corresponding inverse problem equations are generated by the
d-problem in the case a=i and by the nonlocal Riemann— Hilbert
problem in the case a=1.

Equation (1.1) is considered also within the iramework ol the
5-dressing method. The classes of the-exacl explicit solutions of
equation (1.1) with functional parameters and rational-exponential
solutions are constructed. Static lump (rational nonsingular) solu-
tion of equation (1.1) with e=i and the exponential solutions in the
case a=1 are also found. “

Equation (1.1) is, in a certain sence, a generatling (prototype)
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equation for the DS and Ishimori equations. Namely, it g(x, y, £) is
a solution of equation (1.1) then the variables S= — g~ 'o3g and

P=(osgi—ag) g ' =( 1)
'l L

obey the Ishimori and DS equations respectively. So, the solutions
of equation (1.1) generate the corresponding solutions of the DS
and Ishimori equations. In particular, the static lump solution of
equation (1.1} with e=i gives rise to the vortex solution of the
Ishimori-I equation and to the static lump solution of the DS-II
equation. The exponential solutions of equation (1.1) at a=1 (bre-
ather) generate the exponential localized solitons of the DS-l1 and
Ishimori-1l equations. The interrelation between equation (1.1} and
DS equation can be treated as a semi-gauge equivalence while the
[shimori and DS equations, as known [17, 28], are gauge equiva-.
lent to each other.

Another important feature of equation (1.1) is that this equation
exactly coincides with the nonlinear equation for the 2X2 malrix
eigenfunction W, which corresponds to the DS equation. This equa-
tion for W, arises after the exclusion oi the potential P from
the corresponding auxiliary linear system L, (P)Y¥ =0,
Lops(P) W Hs=0. So, the nonlinear equation for the Davey— Stewart-
sons eigenfunction W, is itseli integrable by the IST method. The
coincidence of equation (1.1) and the nonlinear equation for W is
not accidential and it is connected with the semi-gauge equivalence
of the DS equation and equation (1.1).

Equation (1.1) for the GL(2, C)-valued field g(x, y, f) is, in
fact, the principal chiral lields type equation. This equation can be
rewritlen in the equivalent form (see (2.1)) which includes only the
left currents gg™', g.g~" and g,e~' and, hence, it has a simple
algebraic and geometric sence. '

Equation (1.1) and its interrelation with the nonlinear equation
for eigenfunction YW, is not an exceptional case. It exemplifies a
rather general phenomenon. In the present paper we discuss the .KP
equation and the resonantly interacling waves equation in the 241
dimensions from this point of view.

In the one-dimensional limit g,=0 the system (l.1) is reduced
to the simple local equation

g —aag e+ 20388 ' g:=0. {1.6)



Equation (1.6) is the generating equation for the nonlinear Schro-
dinger (NLS) equation [I—6] and for the Heisenberg ferromagnet
model equation [l —6]. Correspondingly equation (1.6) coincides
with the nonlinear equation for the fundamental eigenfunction Wy q
of the NLS equation. Similar results for the Korteweg-de Vries
equation are also discussed.

The paper is organized as follows. In the second section the
derivation oi equation (1.1), its operator representations, the inter-
relation between equation (1.1) and DS, Ishimori and nonlinear
equation for W, are considered. In the sections 3 and 4 the solu-
tions of the initial value problems for equation (1.1) are given in
the cases =i and aa=1. The d-dressing method is applied to equa-
tion (1.1) in the section 5. The classes ol the exact solutions with
functional parameters and rational-exponential ﬁoluliunﬁ._ are con-
structed. In the next section the static lump solution ol equation
(1.1) at @=i and exponential solutions in the case =1 are found.
In the section 7 some other examples of the generating equations
and equations for eigeniunctions in 241 and 141 dimensions are
considered.

9. CHIRAL FIELDS TYPE PROTO-EQUATION: INTERPRETATION,
DERIVATION, OPERATOR REPRESENTATIONS AND ALL THAT

1. Equation (1.1) is the equation for the field g(x, y, {) which
takes its values in the local group GL(2, C). Such flields are
referred as a principal chiral fields (see e. g. [, 6]). It is easy lo
show that equation (1.1) is equivalent to the following

igg b— Oa( Qe ~ |

— g8 il ' —ag.g'88 '+ aCy+0sC:=0, (2.1)

Jor= a2ﬂ3[g_.;g' J;'_'J_

OECH — 630 — Ug[ﬂg”g_ h— Oagsld ]j ).

i |

Equation (2.1) contains only the !cit currents gg” ', 88 ) 848
which belong to the local Lie algebra gl(2, C) and therefore it has
a pure algebraic sence. If one denotes

i I

Jo=gg ', lh=g:g Jo=gug~
and xp=1, x,=x, xo=y then equation (2.1) hecomes
iJo— 63l |, —ally,—oadids—aldi+aC,,+03C, =0,
aC,,— 03C, —0oaf2— asli)? =0, (2.2a)
6

Al s

axg ax;

+[ i, Lo =0, (i,k=0,1,2), (2.2b)

o3l —o3l\) +(als—0a3fy) 03=0, (2.2c)

where equation (2.2c) means that (afs—03/1)sg=0. A representa-
bility in the current form is a characteristic feature of the principal
chiral fields type equations (see e. g. [l, 6]).

Equation (2.1) (or {(2.2)) is invariant under the arbitrary right
shifts g-~g’=gh, where h, is an arbitrary constant GL(2, C)-valu-
ed matrix, but it is invariant only under special Ileft shiits
g—g'=hg where h; is an arbitrary diagonal 22 matrix. Recall
that the (1-1)-dimensional principal chiral fields equations (see
e. g. [l, 6]) are invariant both under arbitrary left and right shifts.
Algebraic formulation (2.2) of equation (l.1) can be used for its
Lagrangian and Hamiltonian treatment.

2. An equivalence of equation (1.1) to the compatibility condition
for the linear system (1.2), namely, to the operator equation ([.3)
is verified straightiorwardly.

As it has been pointed out in [29] the operators L, and L. are
delined for the integrable equation which possess the quartet opera-
tor representation (1.3) nonuniquelly but up to the transformations

: " A 2
L—~Li=Y Culi, N—Ni=) N:Qu, (2.3)

=] k=l

where Ni=Lo+yi, No=y>— L, and Qi and Qu are arbitrary diffe-

-
rential operators which obey the constraint Z QuQr=0i. So, the
k=1
whole family of the operators L, and L, correspond to equation
(1.1)}. The operators L, and L, of the form

£|=CI.H6'_,-,.—"G;-]H[}X, {23:‘1}
Lo=1ig0;— 203802 —2(ag,+ 038:) 0, (2.3b)

are the representative of this family. Indeed, equation (1.1) is equi-
valent to the operator equation [L,, L.] =vy, Li+7v2:Ls where

Vi=2[ 03, gl f?f.—|—hr?_.:—|—a, -

Vo=| g, 03] 0+ glag,—asg.) g ', (2.4)

=]



a is given by (1.5) and
b=2a(g,— g8,g ') +2(g0sgg "+ 03g) .

It is not difficult to check that the operators L, Ls, ¥i, 72 are con-
nected with the operators L, Ls, y1, v2 by the relation

ilILh Ezziz—l—gﬂxi- Yo="7Yz,
vi=vi+][ L1, 20, —2y20;. (2.5)

The relation (2.5) is the special case of the transformation (2.3)
with QHZQH=1 _[,{:], Q}: Qt2=Q!2=0 and Qzu:—Qw:?Eix-

Note that the operator L, can be obtained irom the operator L%-
simply by the exclusion of the derivative d, from L with the use ol
the equation LW =0. Dillerent pairs of the operators L, and L, can
be convenient for the different purposes.

3. Here we will consider another way of derivation of equation
(1.1). Let us start with the auxiliary linear system

LW =(agd,—o3gd,) ¥ =0, (2.6a)
LoW=(igd, 4 Qi8.0,+ Qa0+ Q30,) V=0, (2.6b)
where Q;, Q2 and Q3 are unknown 2X2 matrices and try to find a
nonlinear equation for g which guarantee the compatibility of the

system (2.6). Let us look for the solutions of the system (2.6) of
the fTorm

qjl{xﬁ Y, 'J’I) :‘x‘[j_}f‘ 4, !1 }b} ><

Jerlgrerg) 0

i o’
+ —_—— |y —ax+4+ —! }
e ; Hp{ 23 (y A

where & is an arbitrary complex parameter and the 232 matrix
function y has the following properties:

K{I-yi,l]--h-l al A—o0,
x=y%0l%, 4, 1) + A1, 4, 0) + ... at A—0. (2.8)

In virtue of (2.6), the function ¥ obeys the system of equations
agd,—osgda— - [ 03 gx] =0, (2.92)

8

igdm+ Q.0 + (% Ol Qa) 3,1+ Qudsy + j Qibsno i

i { o,
E EQ'&K—F ﬂ@:!]{ﬁﬁ o ﬁlgﬂtgd— Q1) xo;=0. (2.9b)

The normalization y-— 1 is obviously admitted by the system
(2.9). Then the condition of the absence of singularities in equations
(2.9a) at A—0 gives

| 03, g%0] =0, (2.10)
g=Ay;", (2.11)

where A(x, y, t) is an arbitrary diagonal matrix. So there exists a
certain arbitrariness in the relation between g and yy. This freedom
can be removed by the introduction of the field g such that

B=vyy . (2.12)

The system (2.9) can be rewritten in the terms of g and Q.=A"'Q,
only. To achieve this it is sufficient to multiply equations (2.9) by
A~" from the left.

Further, the regularity conditions at A—0 for equation (2.9b)
gives ;
Q1=-~?’1§. QQZJ—QCIE_H, Q:ﬁZ-'—QC-‘:g__;. [2]3)

As a result, we arrive at the system (1.2) with g—g and at the fol-
lowing system for y:

Ay — 3G 0y — ;E | 63, &%) =0, (2.14a)
A
g0y —2080,:0,— 208,05+ Zy0:3) —

— 2 (@d,(@x) + &) 03) =0. (2.14b)

Now one should extract the nonlinear equation for g from the auxi-
liary system (2.14). To do this let us substitute the expansion
xx Yo bR =xolx, g, 8) +hp1 (6, 4. 0) +APgalx, g, 0) + ...

into the system (2.14). Equation (2.14) gives rise to the condition

9



(2.10) and the recurrent relations

@0 yyo— O30 po= % | o3, Z011 (2.15a)
- - o : >
g a1 — 0301 = g | 3, Z%2| . (2.15b)

The relation (2.15a) implies that the matrix «gd,g P, s
the off-diagonal one. In the term of g this means that
(agd, (g 'A) —03g0.(g ™ 'A)) tiag=0. This condition fixes the matrix
A. Namely, the matrix A in (2.11) should be choosen in such a way
that

({A 'g) 0,A7'g) T —oyA 'g) A '8) T arar =0, (2.16)
or
(agd,g ' — 03808 Y diag 4 (08, —036,) InA=0. (2.17)

[t is clear from (2.17) that the above condition does not fix the
matrix A uniquelly, but up to the multiplication by the matrix Ag
which obeys the equation (ad,—030«) InAg=0. Such a matrix is of
the form

e iy 4, ) 0

1

l 0 ' o Wl=—texs i Ji

where ¢, and ¢, are the arbitrary functions. Hence, one can intro-
duce the variable g by the relation

g Agyg '=A0g, ~ (2.19)

where A, is an arbitrary matrix of the form (2.18) and rewrite all
the equations in the terms of g. These equations will contain the
arbitrariness connected with the matrix Ao.

Other way is to formulate all relations and equations in the
term of variable g defined by (2.12). In the further consideration
we will follow to this way. We will omit the bar and will write
simply g instead of g.

Now let us return to equation (2.14b). The substitution ol the
expansion (2.8) into (2.14b) gives

i{,’ﬁr:{n e Ea-gaxay}:u —2 ﬂ-{gxﬁ Tyl + ggra r'I,[]j' S
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—io(ad (gy1) + 0Lgy) 03) =0, (2.20a)
g0 — 2080 Oy — 200 )1 + LyOxx1) —
—ia(ady(gy2) + 0 {gye) 03) =0, (2.20b)

---------

Since yo=g ', then equation (2.20a) is, in fact, the nonlinear evo-
lution equation for g. In order to rewrite (2.20a) in a closed form
one should use the relations (2.15). The relation (2.15a) gives

fﬂ'[H:{|;J¢>ff:{j3[ﬁﬂg.k’_a'g_r,l} E_l, {221}

where My & (D —Dying, (Dasiag) ir £ M6, for an arbitrary matrix @,
Then, the relation (2.15b) implies that (agdyyi—0380xx1) diag=0.
Alter some transformations this condition gives

ffl{ﬂ.(}y—— USax] {g:{ﬂe:;uy:[mﬁ’;ﬁ_l — O34 l} {g;'f,l}ﬂﬂz

=oyag,g ' —03g:8 )* (2.22)
Denoting '
A L 21 ) diag : : (2.23)

and substituting (2.12), (2.21) and (2.22) into (2.20a), we obtain
the nonlinear evolution equation for g(x, y, {) which coincides with
equation (2.1) and, equivalently, equation (1.1}).

In a similar manner one can construct equation (I.1) starting

from the auxiliary system with the operators L, and L, of the form
(2.3).

4. Now we will demonstrate the generating (proparent) charac-
ter of equation (1.1) with respect to the DS and Ishimori equations.

At first, we recall the DS and Ishimori equations. The DS equa-
tion is (seee. g. [l —3])

'EPI _(Iﬂlflfj_r.r_+“ '1?!”_4;_4};] "{‘ G:}P tT‘ {G,‘jQ D:'r —_— U i

(otd, — 030:) Q p=03(ad,+ 6:d,) P*, (2.24)
. 0 ¢ ; ; ‘ :
where Pz(}w [’;) and Q, is a diagonal matrix and a’=+1. The
DS equation is the compatibility condition for the linear system
LW s & (@0, — 030, + P) Wps=0, (2.25a)

i L def . F =~ 3 o ¥ i ( :
Ly W = (id,—20305i+ 2P0+ Q -+ osaPy+03P,)) Wps=0. (2.25b)

%
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The operator form of the compatibility condition is | o5 L el
The Ishimori equation [30] looks like

g;(x, Y, %)+ P I:S'H +a’S,,) + m-¥§y+ m:‘»fg::' 0,
By — 2D+ 225 {S. X S,) =0, (2.26)

where S= (S, Sz, S3) is the unit vector §5?2=1, ®(x, y, t) is a sca-
lar function and a?= =+ 1. The Ishimori equation (2.26) is equiva-
lent to the compatibility condition for the auxiliary system [30]

LB, & (ad,+ Sd,) ¥,=0,
LW, 2 (16,4 2802+ (Sc+aS,S —in’SW, +iM,) 6,) V=0,  (2.27)

where S=8& and a,, 09, 63 are Pauli matrices. The operator form
of equation (2.26) is | L[*, L,") =0. Note that both the DS and Ishi-
mori equations contain nonevolution variables @, and @.

The DS, Ishimori equations and equation (1.1) are similar in
their forms and their close interrelation is not so suprising.

Let us start with equation (1.1} and DS equation. Using the
condition (03gxg ™' —ag,g ') aiag=0 or, equivalently,

os(0sgg —ag,e ") +Hosgg T —agg ") =0 (2.28)

it is not difficult to verify that if g obeys equation (1.1) then the
combinations

P=osgg '—agg (2.29)
Qp={ad,+03ds) C (2.30)

obey the DS equation (2.24). So any solution of equation (1.1)
generates the solution of the DS equation by the formulae (2.29),
(2.30).

The fact that the DS equation is a consequence of equation (1.1)
can be proved in a different manner with the use directly of the
auxiliary system (2.14).

Indeed, the relation (2.15a) gives (2.21) or

0288 ' —ag,g ' =iacygyi)ey- (2.31)

An evolution equation for the quantity P X iaos(gy)ey follows

directly from equation (2.20a) (or (1.1)) and equation (2.20b). One
has

12

[Pi= — % | 65, 8ot + 801 =

:n;;lfP”—{—GLEPw} — o3P tl‘{{{;ﬁ.ﬁ3ﬁy—|—{3xj im(gxljdiﬂﬂ} . {232]

Taking into account (2.22), we finally obtain DS equation (2.24)
with
Qp=(ad,+030:) ia (2%1) divg - (2.33)

So, the DS equation is nothing but the closed equation for
Pﬂfcma{xn_‘x,)gf;, generating by the linear system (2.14). Both
equation (1.1) for g=yxs' and the DS equation for P~yg 'y are
the two first members of the family of nonlinear equations for y,,
%1, Yz, ... which follow [rom the linear system (2.14). Equation (I.1)
is obviously the basic equation in this family. In virtue of the recur-
rent relations for jo, %1, %2 ... all other these equations are its con-
sequences. In particular, equation (l.1) generates the DS equation
by the transition to the variables (2.29) and (2.30).

Note that in such a treatment not only the potential P for the
DS equation but also the nonevolution field @, are reconstructed
through the eigenfunction y:

P=iooygxieif, Qp=(00y+ 030:) ia(g)1)aiag- (2.34)

Recall that in all these formulas g=g=1yo ' The corresponding
equations written in the terms of g=Aqye ' will contain the arbit-
rary matrix Ag of the form (2.18).

Now let us proceed to the Ishimori equation. It is not difficult to
check that if g obeys equation {1.1) then the variable

S=—g lasg (2.35)
obeys the Ishimori equation (2.26) with
M(x, y,{) =2ia Indetl g. (2.36)

In the proof one should use the condition (o3g.g™'—
— 8,8 Vaiog=0. Then, since L"?=gL" L"?=gL)", the auxiliary
linear problem (1.2) is converted into the linear problem (1.2) is
converted into the linear problem (2.27).

Note that the expression (2.36) for the scalar function @ in the
case oo={ has been obtained for the first time within the direct
linearizing transform approach in [28]. Note also that the
term a«C,+03C; does not contribute into the quantity



S;=g '[gg ™", 0s]g and that the second equation (2.26) is satis-

e

fied identically due to (2.36).

Thus, the solution g of equation (1.1) generates by the formulae
(2.35) and (2.36) the solution S=3G and @ of the Ishimori equa-
tion.

So, we see that equation (1.1) can be considered as the funda-
mental (prototype) equation with respect to the DS and Ishimori
equations.

2. The coincidence of equation (1.1) with the nonlinear equation
for the function W, is one more important property of this equa-
tion.

Indeed, from equation (2.25a) one has

P=(0sW ps,—a¥ps) ¥os - (2.37)
Substituting this expression for P into equation (2.25b), we obtain
W ps,— 03V ps,,+ " Wps,) +
+o03Wps W o5 ¥ ps, +a’ca¥ ps, ¥ DS ¥ ps,
—aW¥ps, Wos WYps,—a¥ps, ¥ bs Wis +Q,=0 (2.38)
that exactly coincides with equation (1.1) if one takes into account

the second equation (2.24). _
This fact demonstrates the fundamental character of equation

F1).

( %he coincidence of equation (1.1) and equation (2.38) is not
accidental and it is closely connected with the gauge equivalence of
the linear systems (2.25) and (1.2). Indeed, let us perform in the
system (2.25) the gauge transiormation

Jos=GW¥. (2.39)
As a result, the system (2.25) is transformed into the following one
[\ =(aGd,—03Ga, +(aG,—03G,+ P(G)) ¥=0,
LW =(iGé,— 203G —2(203G,— PG) 0.+
4-(—203G,x+2PG+iGi+ QpG+(aosPy+ Px) G) ¥=0.  (2.40)

Now let us choose G such that
G, — 063G+ PG=0,

l'.-(;f_ 205GII+2PGI+{Q0+ EI{T:;IJ_H—'— Pr} =1, (24]]
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With such a G the system (2.40) becomes
LW =(aGd,—03Gad,) ¥=0,
LW =(iG3;—203Ga2—2 (G, +03G,) 8,) ¥ =0. (2.42)

The operators L; and L, exactly coincide with the operators
(1.2) and, hence, the variable G obeys equation (1.1). On the other
hand, . the variable G obeys the system (2.4) that is exactly the
auxiliary linear system (2.25) for the DS equation.

So, each solution of equation (1.1) is the certain DS eigeniunc-
tion W, and vice versa. Such a coincidence gives us also a way of
constructing the solutions of equation (1.1) using the known DS
eigenfunctions Y.

The interrelation between the operators L, L)® and the opera-
tors Ly, Ls given by (1.2) is a very simple one. Indeed, starting
with the linear system (1.2) and performing the gauge transforma-
tion Y=g 'W, we arrive at the linear system for W which coin-
cides with the system (2.25) with P=o3g,¢ 7' —ag,g . So

Liv=17"= L =i it (2.43)

The relation (2.43) and correspondingly the interrelation between
equation (1.1) and DS equation can be treated as a semi-gauge
equivalence. :

A usual gauge equivalence (see e. g. [1]) takes place between
the Ishimori and DS equations [17, 28]:

e g L=l (2.44)

The coincidence mentioned above can be treated also in a follo-
wing way. Let one has the auxiliary linear system (2.25). The
exclusion of the function W, from this system gives rise to the DS
equation for P which is integrable by the IST method. On the other
hand, the exclusive of the potential P irom the system (2.25) produ-
ces the nonlinear evolution equation for W, which, as we have
seen, is integrable by the IST method too. So, the DS equation for
P and equation (1.1) for W, can be treated as the irreducible
integrable forms of the basic mixed (reducible) linear system
(2.25).

Similar situation takes place for other integrable equations too.
Some examples will be discussed in the section 7.



3. INITIAL VALUE PROBLEM: THE CASE ot =i

In this and next sections we will present the solution of the initi-
al value problem for equation (1.1) for the class ol solutions with
the asymptotic behaviour g(x, y, {)—>1 as x4 y*—>o0.

The method of solution is the standard d and nonlocal
Riemann — Hilbert problems method (shortly ¢ —NRGP method)
and many formulae are similar to those found for the Ishimori
equation [1?’[ By this reason we will omit some details.

We start with the case w=i. It is convenient to introduce the
complex variables

(y—ix) .

: 1
z:%(y—l—fx}, 2=—2—

The starting point is the problem (2.14a) which in our case can be
written as follows

d. ‘D [ [ 2
x — — | O3, — — | O3, ;_”4
(:] rl«) % o, [ 03, %] o | 03, (8 %l +

= {F3

+#__{ —1) dy+ =2 (g—1) 0,x=0. (3.1)

We firstly should solve the inverse problem for equation (3.1). Fol-
lowing to the standard 0 —NRHP method, we will consider the
solutions of equation (3.1) bounded for all A (possibly with the
finite number of singular points) and normalized by the condition
y— 1. Such solutions of equation (3.1) obeyv also the integral

A o

equation
2z, Z, A A =1—(GQ(,8, 1) (.. A\ 2,2, (3.2)

where G is the operator inverse to the operator

g, D
L“:( r?)__|
and
Q(d,d,A) = — ;7 [ aa, (g—1) ] 4+

| —as I—|—UJ,
2

(g—1) 8-+ (g—1) a5 (3.3)

The operator G is exactly the same as for the DS [14] and Ishimori
[17] case and it acts as follows
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dz' Ade
(6D) (2,2) = || ZLLE
2
dy, (2, Z) dhg{z’,?’:lexi}{ﬂz ) 4 f[z—z’]} |
ghusig 5 g S R
I (3.4)
—mz'h""ew{ L i Hf—fl} Dy (2, &)
[ F—z ) A }E F—_z I

where ®(z, z) is an arbitrary 2X2 matrix. Note that the operator
G is the bounded one.

[t is easy to see from (3.4) that the Green funclion G(A, X) is
nowhere analytic in A. As a result, the solution of the equation
(3.2) is nowhere analytic too.

Following the é-method, we must construct now a correspon-
ding d-equation for y. Differentiating equation (3.2) with respect to
) and taking account (3.4), we obtain

Oy (2,2, A1)
an

e

iz

0;  Fi(h &) exp {'T g T}

= | —&gie. a0k, (3.5)
{ Fa(h, &) exp{ -E:f——ﬁ} S ’ o
where
. (( dzNdz : iz iz A %
Fl{\?"-: ﬁ"j:SS _:?tg Exp{ _T_ T} | Q{a# ﬂ!-"""} {}:(E! <y }":”13.-
- dz \dz ] iz el e T
i i) = — (| E0% exp {2+ 21000, 0.1 x2 ZWlar,  (36)

The terms proportional to §(k) which could appear in r.h.s. of
(3.5) are equal to zero due to the special matrix structure of Q and
the vanishing at A=0 the integrals which contain the highly oscilla-
ting exponents similar to (3.6).

Then we introduce another solution N{z, z, A, A) ol equalion
(3.1) which obeys also the integral equation

Nz, Z MK =2,(2.2) —(G Qd,d,M) N(... 1) (2, 2), (3.7)
where
: o445}
3 (2, )= i ‘ ] . (3.8)
l Ex}a{ — = ifl} | ‘
4



~ Comparing equations (3.5) a.d (3.7) and assuming that the homo-
geneous equation (3.7) has no nontrivial solutions, one obtains

n@ZbY _ vz z a0 (F‘*, “). (3.9)

aA 0 F\
Now it is necessary to establish the relation between functions N

and y. Using the integral equation (3.2) and (3.7) and the identity

[G(...., N) Q... 3) D) =| G (..., 1) @(....,A) D] 2, (3.10)
one finds
N(z,Z, Ay =% (2,2, A, A) 21 (2, 2) . (3.11)

Substituﬁng the expression (3.11) into (3.9), we finally arrive at
the linear d-equation :

N =x(2, 2, MM F(MAZ2), (3.12)

where

I

i Fl{}».?:jexp{i;:—l— ”}
F(M A 2 2)= : | (3.13)
I Fﬁ’h,?f}exp{—f—z-- £E} 0 ‘

?"‘||

i bty

and F, and F, are given by (3.6).

In order to complete equation (3.12) one should add also the
information about the singular points of the function y. We will
assume that the homogeneous equation (3.2) has a finite number of
simple points A, ..., A.. This implies that the solutions of equation
(3.2) have a form

XzZL0 =) “;h"’zfl a2z D, (3.14)
where @, are the solutions of the homogeneous equation (3.2) and x
is a function bounded in A. A precise structure of the singular part
S of the function % can be determined by the use of the following
two properties of equation (3.2). Firstly, each column of the 2X2
matrix @; obeys the homogeneous equation (3.2) separately. There-

fore, the columns (m‘.‘) and (m”) can be the solution of the homo-

]
21 (@ gy

geneous equation (2.4) in different points & and pe. Secondly,
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@y, O

by, 0
solution of the homogeneous equation (3.2) at the point A; then the

matrix
0, mu) (;5 iz)
ex _ —
(ﬂ, M., P A r i

is the solution of the homogeneous equation (3.2) at the point A. As
a consequence of these two facts the singular part S of the function
v is if the form

it Tollows from the identity (3.10) that if the matrix ( ) is the

n

il ' :
¢ 1 iz iz
e T UL 1
. P 23 g e i

k=] f==|

il

! -3 iz :
L-\' = T :,I :]., 2 i . 5
B i Z ;_U,,JFZ exp{ k+m}, _rx Yo {50S)

=1 =1

Linear d-equation plays a fundamental role in the IST method:
it generates the equation of the inverse problem for the prE‘tldl
problem (3.1). Indeed, taking into account (2.18) and using the
generalized Cauchy formula (see, e. g. [19])

ik’

o [ di" A4k’ X dr’ ¥ () ’
piy= ([ AR Ay | 2 L (3.16)

e e e 2ni N —A
i G

where C is the entire complex plane, we obtain from (3.12) the fol-
lowing integral equation

i AdN yE 2 R AR ) :
"“"I s AL *-r / . b {‘3]?}
2 i h— A

1(31 E? '}I":' '}“']I — ]' --'— SI::E1 -zs .}'41 ?:::I _i-- SS

lf?

where S is given by (3.19).

The two-dimensional singular integral equation (3.17) is the
basic equation of the inverse problem for the spectral problem
(3.1). In order to extract the complete set of the inverse problem
equations from (3.17) one should use also the relation

s SRl ) w, - a1 1 n
T By sy TEEFN T Yiis () i
lim | ¥ el 7 Ll o ) : {a.18)
N h—h,/ \0 — iz M v/ '
i Ll ' | B T



where y; are some constants. The relation can be proved similar to
the DS-I and Ishimori-I equations cases [12, 13, 17].

Taking into account (3.18) and proceeding in (3.17) to the
limits A—A;, A—p, one gets the system of equations

b0l (Ftni)+ )2+ ) e (- £ k)

R =1
di’ A di AN FO A 2, - .
—|—SS h;', X2, 2 }!J ‘* h zf):[} 12 B RS R
JUE v T Ay

fly

1 iy
() iz D ™ g . iF
b= WG (= S try)+ ) Tt ) T {E 4 Ly
T i — j— Ay Ay A
k=1

f=]

dv N\dN x(z, Z,N . N) F(V W, 2,3) = e :
—|-SS i — w=i) foreee], 2 1*1,,..,{12].(3.19}

At last, directly from the problem (3.1) (see section 2.3) one has

g2z 0=y : C(zZ0=—(t0  X1)aie (3.20)

where

i S L = ¢ ] 1
xné;{(z,z,mnjlhu and xl[z,z,f]Lfo{z 76 W 1 8 PR

Equation (3.17), (3.19), and formulae (3.20) form the complete
set equations which solve the inverse problem for the spectral prob-
lem (3.1). The set

F(hA) ={Fi(MA) ; Fyl 4, ,'ﬁ,]l Roveli==1 . ;) s B Yepll=1, ... me)}

is the inverse problem data for the problem (3.1). Given % (A, 1), one
can calculate functions y, ® with the use of the integral equations
(3.17), (3.19). Finally, one reconstructs the wvariubles g{x, y, 1) and
C(x, y, t) by the formulae (3.20) where

d\ NdN y(z,Z, 0, N) FOZ, W zf:l

to=1+5,_o+{

o Y
c
__ @8 Sg dM’ AdN x(z,Z, M, A FO, N, 2, 2)
=" o i e ; (28]

C

Note that the equations (3.17), (3.19) are solvable at least for the
small data F(A, A).
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Now we are able to solve the initial value problem for equation
(1.1). For this purpose one must establish the evolution of the inverse
problem data & (A, &) in time {. Using equation (2.14b), one, in a
standard manner, gets

dF (LAY (L L) FiOLK £
di s T3 fridAg,
ng(},,ﬂ.!_}__i(i L)F 5
g g v Al
o _ due _
ST
i (VIO S TS (3.22)
P S iy
Therefore
Fy(\ b f) =F, (0, &, 0) exp [“? (LJJFTL)E]
Fa (b &, ) = Fa (A, &, 0) exp [—% (% +%) .r] (3.23)

i :
ﬂ"‘lfl_-?tﬂq—i_._ng ﬁi‘z:{(r} =-F2J'E__1:I£,
M Ly
where v, and vy, , are arbitrary constants.

The use of the formula (3.23) allows us to solve the initial value
problem for equation (1.1) by the IST method standard procedure

glx, y, i}ﬂ} Flh, A, ﬂ}ﬂr?u by 1) —

56 (310) 15:50) , :
(3.17).(3.19),(3.20) glx, y, 1) . (3.24)

Emphasize thal the procedure described gives the solution of the initial
value problem for the variable g which tends to the asymptotic value
(unit) sufficiently fastly as x*+y*—oo.

As usual (see e. g. [I0—13, 17]), one can find the solution of
equation (1.1) which correspond to the case F, J&, A, f)=0 in an
explicit form. Indeed, in this case the system fdeJ is the linear
algebraic system which can be easily solved with respect to @} Sub-
stituting these @, into (3.17), we obtain the solutions of equation
(1.1) given by “the formula (3.20) where xo=1+48|,_, and
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};;:%SIL__U. The simplest solution corresponds to the case
I )
ni=ns=1 and it is
|
}‘_n;l —— =
L
—i Zfw’ it ol AT (—r Z/p —Hf’zi mak £F ;IJ—E—L) g¥ ]
A
. i N | (325
{ (| S s (E————i—"ﬁl)) e P e e T et P [
Lk )
and '
|
B v e 0
It
o T g = - [EETE T sl gt i it gt LI =
[ —i 21k :::ml +1’£+ *‘*ﬁ__lv'«frf,-; ( fz/p -}.F}:n!m +1'm—lﬁ+#)€+ |
L e i sy , | (3:26)
— _-r"'!.‘.- i_i ¥ 3 . Ez"""._!f"f '.I ’ll:ll i 0 I.,L_.I'.. 1-+ s
1 (lg—'— i (}..2 Tk —I_}I)){ 1 T t R X ‘
where
iz it e i
() (~ )
et =(p—2a) " 'exp {Z + E} ; (3.27)
A A
| iz iz
e =(A—q) Lﬂ(p{————_}
11 T

The formulae (2.29), (2.30) and (2.35), (2.36) give us the correspon-
ding rational-exponential solutions of the DS and Ishimori equations,
found in [13] and [17].

4. INITIAL VALUE PROBLEM AT a=1

In the case a=1 the linear problem (1.2a) is the hyperbolic linear
“},-'stem The corresponding equation (2.14a) for the function yx is

( E \
L (), =)

(d, U

Luﬂ 3.

)x——l a}t!—ilﬁ;s,ig—ll:{lJr
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A et \

| —o

. l R ;
T g — 1) dgx+ —5-2(g—1) 3,2 =0. (4.1)

_i_
T
The operator G inverse to

8 DY
am(® 3)-
i - U 5 o 0 ]

can be calculated by the same method as in the previous section. It is
of the form (for Ishimori equation see [17])

. 2 ((‘xp { . ncuh §. } Ma(E, 'r]'"})

oit{an{ = @l ) 0 On )

[ a,” (D {E )
.-ll'

=

(GM) (&, 1) (4.9)

where @ is an arbitrary 2 X2 matrix.

The main feature of the operator (4.2), in comparison with
(3.4), consists in the absence ol A-dependence. Thus, the operator
(4.2) is analytlic function on the entire complex plane of A.

Another feature of the operator (4.2) is that it is defined non-
uniquelly. The freedom in the definition of this operator is connected
with the possibility to choose lhf:. different concrete realizations of
the formal operators & - 'and 6. . This freedom can be used for the
construction of the bounded UpL‘l’dlUl’b G. Indeed, choosing

L}
-

o' { anf) and o'f¥ | arj).
4 et
we define the operator G
(G-, 2) D)) (E,n) =

+-lr- + = ; ‘ {(1_“3}
E ﬂré_.i_"i‘)il':l{ __.I'!_i-".-— 'f_}{[iu ._1r1'l1 E A5 Mg 51} ]

A

—_— — ]

. A {1 —mn') C
| | dwonEn): | ff11’txp{M} M5 (&, 1) l
{ A
L

The choice

o 1Y § agfE,m) and 9, '1¥ [ dwiG W)

gives the operator e
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| dn'®i (&),

= =]

|
- ] 7 % _ | (4.4)
’ .

E

i i fHE=- %9 g
| g dg" exp { - ———} e (55 M) 3
L A
+ oo | o

.-\.

\ dE M2 (L', M)

It is easy to see that the operator G+(l-} is bounded at the upper
hali-plane Im A> 0, while the operator G—m is bounded at lower
half-plane.

Now let us introduce the solutions ¥™ and %~ of the problem
. (4.1) which simultaneously are the solutions of the integral equa-
Lors

 EE AN =1—(GF(-. 1) Q(d,8,1 xT-, ) (E W), (4.5)
where G* and G~ are given by the formulae (4.3), (4.4) and

| — oy | — a3

def i
Q= — % [ R kg—1) <+ 2

(g—1) dy.

As far as the Green functions G™ and G, the solutions y* and
¥~ are analytic and bounded functions in the upper and lower
half-planes respectively. Further, since GT— G~ =0 at ImA=0,
then y ™ —%~ =0 at Im A=0 too. Thus, one can define the function

X (€., 0) = { AR s

¥ Imi=0
which is analytic and bounded on the entire complex plane and has
a jump across the real axis. So, we arrive at the standard Rie-
mann— Hilbert problem. We will also assume that the homogeneous
equation (4.5) has no nontrivial solutions.

At this stage, according to the standard procedure (see [19]),
one must find out the relation between the functions y™ and y— on
the real axis. This relation is similar to that for the Ishimori equa-
tion [17].

Firstly, we note that equations (4.5) straightforwardly give

I iy

(kT —x )G W) =TE AN —| G(-,A) Q@a,8,0 xT—x)| &n)., (4.6)
where

(G(-,2) @) En)=

24

-

y

-_—

T N i e
| dwdyEn); ﬂ'l’exp{ﬂ'—'l—”"}wmﬁnn’}
— s g {4.'7}

l I‘; dt’ L‘:-;P{ B } Dy (€', 1) U dE D (E, )

—_— —_— A

and
e, A=

+ o i _ f o0 = il : i
"3 dn’| Q(a,0,4) x T {EN ) n; —E dn’ Exp{f-w-:j—j—} | Q.3 A ™12 l

=
=

-+ oo r w g * ul
- gffgfexp{—“-E ; f}tQ{a.a.wm | d&'] Q(d,0,4) x| a2

Then we introduce the 2X 2 matrix f(/, £) delined by the relation

i1 k) — +Smdk’ T—(L, k') k', R) =T (I, k) —TH(I, k) , (4.9)
where i
or () — | Eexp {2 — 241 Q (0.4, 0) (&1, D),
' Ti=Tz=Ts=0 (4.10)
and
T (e = “ii“ exp{ i "'—f— %} [Q(8, 8, k) xH(E n, &)1z,
T =T =T =0. (4.11)

The integral equation (4.9), in fact, is easily solved and one gets

0 . T |
f(l, k)= i (4.12)
|TET{£, By, — | a T (k)T (R, k)
Further, the obvious identity
Q(8,8, k) %~ (B n. k) Si(EmF(LE)Ey (Em) =
=[Q(0.8, )% (&, k)| SiEn) f(LE S, E W) (4.13)

holds, where
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e s 11.-' Efa U
nEw®(* ). (4.14)

At last, using (4.13), one can straightforwardly show that the
quantity

b oo

§ diy= (En0R) Ze(E ) FlR2) 27" ()

— o0

obeys the same equation (4.6) as (x" —x ) (&, n, A). In virtue of

the absence of the nontrivial solutions for the homogeneous equation
(4.6) this gives

B, B 0
AT IS A — (& K==
| oo

= §dly G nEn e G (4.15)

==

Thus, the jump x*—y at ImA=0 is expressed linearly and
nonlocally via yx~. So, we have the regular nonlocal Riemann—
Hilbert problem.

With the use of the standard formulae which solve the standard
Riemann — Hilbert problem (see e, g. [7, 19]) we obtain from
(4.15) the following integral equation |

-+ oo

= (EmA) — S g dide x~ G0 )SEn)fL)E " Ey

~ o |
2ni k—A+i0 L. (4.16)
Further, directly from (4.1) similar to (3.20) one has
e . 4 =1} e
=40 5 C=i(xo %1)diae. (4.17)
From equation (4.16) it follows that
+ oa
B g [ u’e.’u.k % (5.9 !l_l,g;,n_] Fl.k) X, 1‘E 1}
J 2ni k :
( ( didk v (& AXiE vy FilL BV R~ E 3
o= \ : a A 'MF!.'.:-’I '_"l"l?"_Lﬂ.;.'L'J1'-'I St _I'_:ll" 41
R P e (4.18)
[he integral ec on (4.16) and formulae (4.17), (4.18 e tl

complete set oi the inverse problem equations for the spectral prob-
lem (4.1). The functions T, ({,k) and T (l,k) are the inverse prob-
lem data. :

To solve the initial value problem for equation (1.1) with =1
one should to lind, as usual, the time evolution of the inverse prob-
lem data. The evolution laws of the functions T} and 7, can be
found in a standard manner from the second auxiliary linear prob-
lem (2.14b) with a=1. One obtains

b (kA £) = T3 (k, 4, 0) exp {% (=+5)1),

Tsr (kA 1) =T (k, . 0) exp { = % (ﬁ 4 Tl—*) r} . (4.19)

The inverse problem equations (4.16) — (4.18) and the evolution
law (4.19) allow us to solve, in principle, the initial value problem
for equation (1.1) with e«=1 by the standard procedure (3.24).

The formulae (4.16) — (4.18) give the possibility to construct
exact solutions of equation (1.1) with e=1. In particular, one can
construct exact solutions with the functional parameters which are
typical for equations connected with the nonlocal Riemann— Hilbert
problem [22]. The solutions of such type correspond to the facto-
rized functions 7,5 and T,; of the form

o T - b e
”“‘*’”—E,” 0 gt Wy expl— (5 + )t}
ot N 3 o () gr (k) Exp{ i (—+—2)r}, (4.20)

n=l

where f*(l) and g (k) are arbitrary functions. The solution induced
by (4.20) depends on 4N arbitrary functions of the single variable.
The expression for y, has been given, in fact, in the paper [17].

In the next section we will construct more general solutions
with functional parameters both for equation (1.1) with =i and
=1
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5. EXACT SOLUTIONS VIA 3-DRESSING METHOD

In this section we will consider equation (1.1) within the frame-
work of the d-dressing method proposed in [22—24] (see also a
review in [21]). The d-dressing method is the generalization of the
original Zakharov— Shabat dressing method (see [1, 2]). The aim
of the dressing method is to construct the nonlingar integrable
equations and simultaneously their cxact solutions. '

A starting point of the d-dressing method is the nonlocal L

d-problem [22]

dy (h, A) e S A . = 5 - .
o (s R) () =N N ARy (VLT RO AT (5.1) &

3 A,
'8

;r1- = e i ¢ . ] - . .
whnere y and R are matrix-valued functions. We will assume that
the function y is canonically normalized 7 — 1 and the d-equation

P

.{'l.‘l) Is solved uniquelly. A dependcnce on the variables x, y and {
is introduced by the following dependence oi # on x. i3

—-—.-_r]jr‘? —_ f_ﬂ- {- -..i' TS e L e L E A W A L ].
(‘;I__f S '_3 B -I';‘ e [-I’l.- " A 1 .|l‘.-'1, o, -t-: _H1 l!ll] _!_ R 'llulr'v " }-. P "ﬂ""l }..1 X .I,-;! f-:l T) >
dR £ ( (Fy oy i o
—_— s —— _— B T £y (A F mr a n O3
T i TR RA A kb, y, ) +R(W, M, A Ay x, 4, 1) A ) :
aR. . ie* 74 L .
gl ' 4 i o P PR e e 03
a1 2 { g ROV, A A x g, ) + RV, NV, A &y x, y, ) A? J o Kg)

i Ty i i oy ' £ L :
RN A hX ) O =eip{ — — .;L_};_[_ .{:Tﬁ:y_i_rx"-l,g.?_f W
2 r'-" .I'.,.f l;"‘.f.?

i o g i & 2 Oz
XR(AM, A, A, 2%,0,0,0) f:xg{— (Tx = %1-.; {—a“}'_—;f—z)} : (0.3)

— P o " A " - " i gt ‘ =
where R(A, &', A, A, 0, 0, 0) is an arbitrary matrix-valued function
e : .1 I . e - 3 : - E . ;
[hen the «long» derivatives Dy, Dy-and D, are introduced

Db s gopai®
/ s m’F‘

_ o
Dyf S '9,f ' fog, (5.4)
&
Dif £ 3,5+ jij‘n -
0.
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Further, the main intermediate purpose is to construct the operators
L of the form

L= ) unmix.y.t) Dt Dy DI, (5.5)

n, m, i

which have no singularities on &, i. e. which obey the condition [23]

l-”— L];U, (5.6)

i3 b,

For such operators L; the functions Liy obey the same d-equation as
a function % and in virtue of the proposed unique solvability of equ-
ation (5.1) one has [23]

Lix=1- (5.7)

The system (5.7) is just the linear system which generates the
integrable equation [22, 23].

In our case one can construct, as it is not difficult to show, the
two operators L, and L, which obey the condition (5.6). For
instance,

Li=agD,—o3gD,,

Li=igh,—2apD.D,—2ag.D,—208,D,, (5.8)
where =
glx.g, D= xx ¢ 0o ™ (5.9)

The corresponding linear system (5.7) is nothing but the system
(2.14). This linear system give rises, as it was shown in the sec-
tion 2, to the integrable equation (1.1).
The formula (5.9) together with the formula
C(x, y, 1) =in (g-—j{— v (h b x, 4, )] ;__U) (5.10)
E i1 i ding
are the dressing formulae which give the solution of equation (1.1).
Indeed, starting with given matrix R (A", A, A, &, 0, 0, 0), one finds
the corresponding solution y of the d-equation (5.1) which is equi-
valently, the solution oi the integral equation
dr’ Ndh (x=R) (17, 3)
2mi L —A

(5.11)

T

x (B =1+ |

AL



where R(M, M, &, A, x, y, {) is given by (5.3). Then the formulae

(0.9} and (5.10) where

2 AN AN dW (xxR) (W,
w (A, }~1|?=D:|+§E "2‘1 '-K*ijf 4 (5.12)
e d»r’ ,e"-.l;.'r}'-’ (x=R) (A, Rl
% (A, A) ' o “ > o (5.13)

C

give the solution of equation (1.1).

Emphasize that within the d-dressing method it is assumed
nothing about the behaviour of g at x, y—oo.

The formulae (5.9) — (5.13) allow as to construct the wide
classes of the exact solutions of equation (1.1).

One of the interesting class of exact solutions, namely, the solu-
tions with functional parameters correspond to the factorized func-
tions R(A’, A, &, A, 0, 0, 0):

RV, M A& x, gy, 1) =e ™ Z R X g De™™ (5.14)
o=

where [, and g, are 2 X2 matrix-valued functions and

FA)= — L (%x—}— i;ig;—}—az%f),

The corresponding solutions, as usual [22, 21], can be constructed
explicitly. Indeed, substituting (5.14) into (5.1), one gets

}
@y, (A, ) . — F i)
= ) ek, g D) (b Ay e T 5.15]
s Y he(x, 4, t) ge(h A ; (5.15)
k==
where
J{i;_- :::_,‘E. Y, ;'J == HS d}l. l,-'"l\‘-. -ﬁf;‘l.- " |::".,_’ ;‘:1 & k I'ﬂ'lf,l,? [:’, I} 2 {5 I El)
e
Then, umﬂg equation (b.11), one finds
- it d Adh B iea
XA A x4, 0) =14 ,L he(x, 4, 1) j\ LU SRRUAT S HBRAT
o 2md A —A ;
The system of equations for fjvuf‘rmmng the qu Elﬂf'”'{’r’_; fr can be
obtained by tf‘sr.-“: multiplication of (5.17) by e "™j{ix, A) and inte

e
ELl

grating over A. One has

h+ ) heAu=E, I=1,..,n, (5.18)
=]
where S -
ey, ) =Y dapdhe”™ fi(h7) (5.19)
C
and E g
{0 arnAdh ((dN AdN
ARE, “_SS 2ni SS ¥
it &

a1 o T W R S PO GRS (5.20)

So, given functions fe, g one calculates the quantities A, via the
system (5.18) and then the function ¥ by the formula (5.17). Fur-
ther, the formulae (5.9), (5.10), (5.12), (5.13) give the solution of

equation (1.1).
Thus, we have the class of exact explicit solutions of equation

(1.1) which depend on the 8n arbitrary functions of two variables.
The simplest solution of this type is of the form (n=1):

imer N ) s (5.21)
where 2
: A A dA -
st il g, 1) SQ ““”’:[:; s Re™"
i
ENET LT ¢ N S T
n=h(xyt) SS 2:’:‘?; ghA)e ' (5.22)
C
and
K=% 44,
Ex,y, ) =V dAAdRe "V R, (5.23)
G
4 _ﬂﬂd.l-"'.;,.-""‘-.,d}_n. SS Iif?-..'r,.-"l\l'j;;; 5 & AT Elfn:.?.l FI::“,J_:F ;J. _}—} {524}
Ax,y, f}—SS = TR e (A1),
[ [

-

where f(h, &) and g(Ah, A) are arbitrary 2X2 matrix-valued
functions.
The class of solutions with the functional parameters described

above contains the subclass of solutions which corresponds to the
choice
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(@) ap=0(A—Al) 6 (A—AL) . (5.25)
For such g, one has
(ile it 9_"'-‘*"3**}*?3'
Yap (Ao %) = B+ Z Z _“ﬁ : (5.26)
R=ly=Il ‘IJI

An intfaresting feature of (5.26) is that each matrix element of such
% has its own set of poles.
In a similar manner one can construct also the rational-expo-

11.{-3.ntial solutions. The solutions of this type correspond to the func-
tions fe, gr of the form

UQM—TZjMw—mwﬁm—éwn&n1
p=1
(Eap=8(A—15) 6 (h—1S); B, p=1,2, (5.27)
whe_re Sk are constant matrices. We will assume that all My are
distinct. Substituting (5.27) into (5.1), one obtains

ﬂj{mﬁ
ah

Z (Be(x, 9, ) ay S(A— i) S (A— X)) o — M, (5.28)
| .
where

(i (X, Yy ) ws = s (ML) & P50 LMD (g (5.29)

Further, the substitution of (5.28), (5.29) into (5.11) gives

:{mﬁ[ ,}_"h-:t,ﬂ+ Z y“r’ ﬁ' kJ EXPEIF {?'f [gk}ﬁp Expi_ —IHFLE{:'L;;;I}F [5 30}

._"k‘l
=’ A rﬁ_

So, the function y is defined by its special values x.;(A%). The

system of equation for determining ,{q?(hif,) can be derived from

(5.30) by proceeding to the limits A—hy.. This system is of the form

i ”
Fo i il e i'}."%"'l
l_lf_. o ”. e "‘r' {5 || [ U O
o (o) =B+ ) o (h38) S 2
Ee]
e ) . 3
a,pf,o=1,2; o£§, : (5.31a)
Hef [ A .!uinll.'l — 'hrx e UK “:':"- Fel Fay I.':l"'r'-l":'l (5 J - Fop I.';I"llf-:é-l Fi If} I:IE;".
S =1 i Aay Lfvalf © L) Gp € Be i Agp) o
e
[ P

" — Fug ';;"Ia'?e:
- Z Z Kooy | yﬁ}f’ . {kaﬁlm : o, B=1,2, (5.31b)
B

ﬁ_} P
=i p=f

where

a Fpp (L)

A A= Apf

Fﬁﬁ l, [11} e

The system (5.31) is a complete system for the calculation of all
Kaplhg “). The variables x, y and { arise in this system due to F and
F’ which are linear on x, y, t. As a result, the quantities yap(Ag &
and, hence, the solutions g and C of equation (1.1) given by (5. 9]

(5.10) are, in general, the rational-exponential Tumtmm on x, y, t

In gmerai for such solutions the each element of y has its own
set of poles. The solutions constructed in the section 3 are the par-
ticular case of this solutions with

w (B)  a [k} & k) e
"i"'ll_?"‘ﬂli- :"m—--}zz k—l..,.Tf’l.

Note, that the formulae (2.29), (2.30) and (2.35), (2.36) give
us the corresponding solutions with the functional parameters and
the rational-exponential solutions of the DS and Ishimori equations.

The formulae (5.27) — (5.31) are obviously generalizable to the
NX N matrix case. On the other hand, in the scalar case the system
(5.31) is reduced to the single equation

() _|+Z X (he) (A) Si F'(A) (5.32)

'—H:
k=l

where it is assumed that [F, Si] =0. This system gives rise to the
pure rational lumps of the KP and NVN equations. For the first
time the system (5.32) has been derived by the use of the nonlocal
Riemann — Hilbert problem in [22].

6. LUMP AND EXPONENTIAL SOLUTIONS

Other interesting classes of exact solutions are the pure rational
and pure exponential solutions. The nonsingular ratmnai solutions
(lumps) are of the special interest (see e. g. [I, 2, 10]). Here we
present the solutions of equation (1.1) of these types.
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We firstly will consider equation (1.1) in the case a=i. It is not

difficult to verify that this equation possesses the following static
rational solution

- | bZ4¢c, —a
s D= - . ( o e ) 3
) lal* +ibz+cl* \a ;- bzt (6.1)
e ey 35
AC11 =0Ce= el L bEr e (6.2)

1 : : I 2
where z=?{y—}—.{x), z=?{y—1x} and a, b, ¢ are arbitrary com-

pigx constants. This solution is obviously nonsingular and decays as
|zi 7' at |z|—>o0, i. e. it is lump. Note that for the solution (6.1)
one has ggt = (lal’+ |bz+4c|?) '=detg.

The solution (6.1) generales the corresponding lump solutions
for the DS-II and Ishimori-1 equations. For the DS-II equation
(equation (2.24) with a=1i) this static lump is

P—(_ )— . ( ol bR )
g 0/ lal*+|bi4el> \—igh, 0 )’ (6.3)

_ Pbzrg’4 b (bz+0)”

(lal?+ b2 4¢|?)?

¢ = tr{os C\‘}UJ e

(6.4)

Both the fields ¢ and ¢ decay as |z| =2 at |z|—oco. Emphasize that
this static solution of the DS-II equation is essentially differed from

the moving lump constructed in [31] for which |g|—const at
|z| = oco.

For the Ishimori-1 equation (a=/4¢) the lump (6.1) gives rise to
the solution i

2a(bz4c)

S:=8+iS= — '
: K e lal®+ 162 4¢c|?’ ki
__lal*—|bz+c|?
S e c 3 #
lal*+1bz4-¢|*
O=2In(la|*+|bz4¢|?). (6.6)

The‘ anlqtion (6.5) is nothing but the real vortex-type solution of
the Ishimori-I equation found in [30].

_The solution (6.1), (6.2), seems, is the simplest nonsingular
rational solution of equation (1.1). It would be of interest to con-
struct the general multi-lump solutions of equation (1.1} which

24

would generate the multi-lump solutions of the DS-II equation and
the multi-vortex solutions of the Ishimori-1 equation found in [30].

The rational solution similar to (6.1) can be constructed also for
equation (1.1) in the case a=1. But it is a singular one.

An interesting class of the exact solutions of equation (1.1) at
a—1 of the different type can be constructed by the use of the coin-
cidence of equation (1.1) with the equation for the DS eigenfunc-
tion. Namely, the DS eigenfunctions W, found in- [25] give the
exact solutions of equation (1.1). The simplest from these solutions

is of the form (see the DS eigenfunction (15) with k=0 in [25] )
on e —kietul o wix—y), ,f"_" e RIS ]

| ' ]

e (6.7)

& A 2i ) ! —pix—y)

{ ol iy o MRS e Tl Rl RIS Al

glx,y.l)=1—

where p, n are arbitrary complex constants, 4, p, are arbitrary real
constants and

A= ETATRE=N L gnchp(x—g) chi(x+y) . (6.8)

The solution (6.7) tends to the constant diagonal matrices along the
directions x4y=0, x—y=0 and g—1 as x* 4 y*—>oo outside these
lines.

For the DS-I-equation the solution (6.7) generates the exponen-

0 g) found for the first

tially localized breather solution PL,S:(
¥

time in [25]. .
For the Ishimori-1l-equation the solution (6.7) gives rise to the
following solution

| . ST —hix4yl e ) :
Sy =Si+iS;=(detg) ' L pi— [1 —pm L:”“ ”] (6.9)
Sy=(det g) ' [(1 I L ool ':h uix —y) ) (l — %f.’ A A +y}) o l,‘"l]g]

where

detg=1—Elch[p(xr—y) —rx+o)l.

For real p, n the solution (6.9) is a real one. The solution (6.9)
is an exponentially localized breather for the [shimori-Il equation.
Using the more complicated DS eigenfunctions one is able to
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construct the more complicated solutions of equations (1.1) and the
Ishimori equation.

7. OTHER (2+1)- AND (1+1)-DIMENSIONAL INTEGRABLE EQUATIONS
FOR EIGENFUNCTIONS

1. Nonlinear integrable equations for the eigenfunctions can be
written done in the other cases too. It is a rather general phenome-
nor.

Here we will consider the corresponding equations associated
with the N-waves and KP-equations.

Iie (2+1)-dimensional resonantly interacting waves equation is
of the form (see [I, 2])

Pix,y, t) + VP, + V¥P,—| V¥P, P| =0, (7.1}
where P is the NX N matrix (P;=0), N=>3,

Vie=—Aad;'[B,-|+B, V.=—ad;'[B, -],

A, B are diagonal matrices and adf_ﬁll‘s——tiﬂfl,t:[i]. Equation (7.1) is
the compatibility condition for the linear system [1, 2]

'V ayr
—'&‘?—J—A"ﬂ——Lpl[r:l]m {?QEJ
1 X
S aw R .
%+B}? +(ad, [ B, P|) W=0. (7.2b)

Excluding the potential P from (7.2), we arrive at the nonlinear
equation for the eigenfunction W:

Wi+ BY, —(ad;y (B, (W, +AV,) ¥ ') w=0. (7.3)
This equation becomes linear in the terms of the leit currents:
W+ BY, Y —ad,; B, YW AV, =0, (7.4)
or
(A, WY+ BY W~ —[ B,W W L AV, ¥~ =0 (7.5)

Equation (7.3) is equivalent to the compatibility condition for the
system

LW & (wa, +AWa,) ¥ =0, (7.6a)
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LW % (W, +BYa, +¥) V=0 (7.6b)
with the operator representation
| Ly, La] =y L1 +7V2L2, (7.7)

where | ] o
vi=|¥,B] d,—Vady [B YW s s s A

el A, ] 3, (0 AV ¥

Equation (7.3) is the generating equation. Evidently, iqtroducing
the variable P=— (¥,+AW¥,)¥~', we arrive at equation (7.1).
Second equation is generated by the variable S=W¥" 'AY. This
equation for S can be written down in a closed form. if all t‘he dia-
gonal elements of A are distinct. In this case the arbitrary diagonal

matrix B can be represented in the form

Nl
B= ) csA",
ne=

where ¢, are some constants (see e. g. [32]) and, hence,

N—1
Y-'BW = ) ¢, S".

it ==I)

The corresponding equation for S is easily derived from (7.4) and
looks like

N=I
Six, g )+ Y. €a(S"Se—(8"y—S(8")x) =0. (7.8)

n=0

Equation (7.8) is equivalent to the equation [ L}, L;| =0 with

L=, £ 50,,
: N—1
Ly=d4 ) ¢:S"d:. - (7.9)
a=10

Thus, each solution of equation (7.3) generates the solutions of the

equations (7.1) and (7.8). ‘
Now let us consider another example, namely, the KP-equation

(1 Upee - 6ty) s+ 30620y, =0, (7.10)

37



uffhere uix, Y, t) is the scalar function and a?= +1. The KP-equa-
tion ([T’I.EOZ}] is the compatibility condition for the linear system (see
o 0 )

LW =(ad,+ 07 +u) ¥ =0, (7.11a)
LW =(0, 4403+ 6ud,+ 3u,— 3 W) V=0, (7.11b)

where W,=u. From (7.11a) one has :
p=—(a¥,+¥,.,) ¥ (7.12)

Sub_slituiing this expression for u into (7.11b), we arrive at the fol-
lowing equation for the eigeniunction W:

LY '—Sr;.:ilfﬁ"_,ﬂli"‘—:imllfx:.J—:iaHJ'wfy:U, (7.13a)
Wita¥ ¥ '+ 0. ¥~'=0. (7.13b)

I‘;qllatiﬂﬂ (7.13) is equivalent to the compatibility condition for the
linear system |

LI =(Wa,+Woi42W.4,) ¥ =0,
"\ ;
Ly V=(V0,+4W 8 + 12,0l —6 (e, — Vi) 3) F=0  (7.14)

wi : ’ " , ur r L s 5
th the quartet operator representation [ L', L,| =v,L"4y,L.) with
Y= — 12¥,8; — 12% .0 — 3¥ ,cx +

+ 3 VW 4 3a W, W T — 3a W, —3a W,V (7.15)
Vo=2W, 0,4+ aW,+ ¥,,
In the terms of the left currents equation (7.13) looks like
Wyl _i_{tJJ'J'_L]J'— l}”_+_ 2 (¥, ¥ i) . P
—3a (V.¥ '), —6a (V. ¥ ') (¥,¥ " —3alW,=0, (7.16a)
Wy=—aW¥W,¥ ' —(¥ ¥ "), — (¥, ¥r—4?. (7.16b)
In thijs. Lﬁ{:a]ar case equation (7.16) can be essentially simplified.
indeed, introducing the variable v={(In¥)., one gets from (7.16a)
the equation : .
Ui+ Usx + 6070, — 600,05 v, + 308 'v,, =0. {117
Equation (7.17) is nothing but the modified KP-equation found in
[33, 34]. On the other hand the relation (7.16b) becomes
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that is, just the two-dimensional Miura transformation [33, 34].
So. in the KP-case the nonlinear equation for the eigeniunction
W is, in fact, equivalent to the modified KP-equation (W=e™ 7).
This equivalence gives us the possibility to construct the solu-
tions of the modified KP-equation using the known KP-eigenfunc-
tions W. In particular, the solution of equation (7.3) at a=i of the
form

: e — (kL [ &+p [ Bl
W= "'(l—|— B xS : : 2)‘
R—n |&1°4n” E—a lEI"4n

where p=i(h—4)~"' and £y —Oay+ 120% 4y and k, A, y are
arbitrary complex constants (i. e. eigenfunction ‘I which corres-
ponds to the one-lump solution of the KP-l-equation, (see 1. 21))
gives rise to the pure rational solution v=W¥,/¥ of the modified
KP-equation.

The solutions of equation (7.13), of course, generates the solu-
tions of the KP-equation by the formula (7.12).

The second equation, similar to the Ishimori equation or equa-
tion (7.8) is, obviously, absent.

2. In the one-dimensional limit g,=0 equation (1.1) is reduced
to the simple equation

ig — 038+ 20588 '8:=0 (7.19)
Or
igwr—'—oa(gg™ ) s+os(gg™ ) =0. (7.20)

Equation (7.19) is equivalent to the operator quartet equation

[ LIFL LA =gt L et L
with

3 || + 1

L gag8y s Lot =igdy, (7.21)

yit ' =gos(g.8" Vet gos (g8 v,

|

wt'=| g, 03] 0.—gosg.g .

1

Note that in the term of the variable G=g ' equation (7.19)

looks like
i = Gasli™ =i,

39




The formulae for the inverse spectral transform for equation (7.19)
can be obtained as the reduction of the corresponding formulae for
equation (1.1). It is easy to check that ii g obeys equation (7.19)
then the variable S=—g 'o;g obey the Heisenberg ferromagnet
model equation

vy i I
iSi+ v [ 8 Sl =0 (7.22)
or Si+8XSx=0 (see e.g. [I, 2, 6]). At the same time the vari-
able P=o03g.g~ "' obeys the NLS-equation (see e. g. [I, 2])
iPi— 03P —esir PP P=0, (7.23)

Pm—(” f;)
W

or

*’fq:_q.r.r‘l_ a‘}ﬂfl'q e )

iri—+ro—2qrr=90,

The auxiliary lincar system for the NLS-equation is (see e. g.
[1, 2]) '
LW s =(— 630+ P4-p) Wiis=0,
LENL:; llrh'L_a;::;flf?_r Q{T;;aﬁ “'I' Qlljax + }].h'_ﬁapg} lerLEE{J & {?24}
where p is a spectral parameter.
A nonlinear equation for the entlire eigenfunction W, . which fol-
low from (7.24) is of the form e

igr G e A { W I yqr ; ?
i nLs,— 03V wis, 205 nis, Wines W nes,— 20 s, — o3 * Wy s= 0. (7.25)

It is easy to see that equation (7.19) coincides with the equation
(7.25) for W, (n=0). So, the situation with the generating equa-
tion (7.19) and the integrable equation for the NLS—EigEHfUﬂCﬁDﬂ
WLs is similar to the (24 1)-dimensional case.

Note also that the reduction gg™ =1 is admissible by equation
(7.19) which under this reduction looks like

(g —0ager+ 2038 T g, =0. (7.26)
The corresponding spin variable S for equation (7.22) is real in this

case and one has P:( }_ :) lor the NLS-equation.
ot .

40

‘
!

In conclusion let us consider the (1-1)-dimensional analogs ol
equations (7.3) and (7.13). They are

W+ BY,—[B,Aad; ' (W, ¥ )] ¥=0 (7.27)
for {6.3) and
¥, W — 3V, W, W =0, (7.28)

for the Korteweg-de Vries (KdV) case. Equation (7.28) coincides
with the nonlinear equation for the zero spectral parameter value
W h=0) of the KdV-eigenfunction W, (k) which obeys the
linear system [l —6]

[[-if —|— i — }L} l_[f Kdu,r.-——U ¥
f{?¢—|—40ﬂ'f—l—6£’£§x+guﬂ q”l{d‘v’:U- [?29}

The integrable nonlinear equation for the entire eigenfunction
¥ av(A) is of the form

W, 460+ Wy — 3V ¥ =0, (7.30)

Equation (7.30) obviously is reduced to equation (7.28) by the rede-
[inition 8,4 6A0,—3d,.

Equation (7.28) by the formula u=—W, ¥ generates the
solutions of the KdV-equation. On the other hand the change
W»y=",/¥ converts it into the modified KdV-equation.

These interrelations and the corresponding Miura transformation
u— —uv,—v® seems, have been the part of the arguments which
have led to the discovery of the IST method in {35, 36].
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