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ABSTRACT

Three dominating subsequences of diagrams in the
correlation correction to amplitude are summed:
screening of the electron-electron interaction, par-
ticle-hole interaction and the iterations of fthe
self-energy. The result of calculations is:
El(6s—7s) = (0.91 £0.01) - 10" Yieay ( — Qp/N), Qy is
the weak charge oi the nucleus, ¥ is the number of
neutrons. The experiment [1] and our calculation give
the following wvalue of the Weinberg angle:
singﬁw,zﬂ.ﬂﬂﬁi—[}.!}{!? (exp.) £=0.004 (theor.}
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Recent measurements of the parity nonconservation (PNC) in
the caesium atom [1] (see also the earlier works [2, 3]) have the
accuracy about 29%. There are numerous calculations of the effect
[4—18]. However only in the work [17] the accuracy of calculation
2% was declared. The improvement of both the experimental and
theoretical accuracy allow us to make more precise the knowledge
of electroweak theory parameter, Weinberg angle, and to improve
the limits on the f-quark and extra Z-bozon masses (see e. g.
Ref. [19]).

In the present work we have done the new calculation of PNC
El-amplitude for 6s—7s-transition in caesium (Epnc). The calcula-
tion is based on the approach developed by us in the papers [20].
This approach provides the accuracy about 0.19% for the caesium
energy levels and about 0.59% for the hyperfine structure constants
and amplitudes of El-transitions.

The way of calculation is as [ollows:

. As zero approximation we use the wave functions and energies
obtained by the relativistic Havr_tl[*ee—Fock method (RHF) in the
irozen field of atomic core (V" -potential [21]).

2. At the second step we calculate Epne taking into account the
polarization of the closed shells by the electron-nucleon weak
‘interaction and by the electromagnetic field of the photon. We
use the time-dependent Hartree— Fock (TDHF) method to do
this step. The result of corresponding calculation is presented in
the first line of the Table I.

3. The third and the most complicated step is the calculation of the
correlation correction.




All the three points of this program have been realized by us In
the work [17]. In the similar way the calculations have been car-
ried out by the Indiana group [18]. The new result of the present
paper is the more precise calculation of the correlation correction
(point 3), and we will discuss only this point.

At the Fig. | we present the diagrams for the seli-energy opera-
tor of an external electron X(ry, r2, £) which is due to the many-
body effects in second order in residual Coulomb interaction. The
correlation correction to the encrg level of an external electron in
the linear approximation in £ equals

ﬁEn:<H|Z{F|.r:z,En}l”>- : (1)

To produce the diagrams for the transition amplitude under dis-
cussion one should add the operators of weak interaction and of
interaction with the photon into the electron lines. The most impor-
tant are the diagrams where the interaction with external field
(weak or electromagnetic) is introduced into external electron line
(Fig.2). These diagrams are enhanced by the small denominator
AE.., which corresponds to the excitation of an external electron
[10, 22]. If an external field is attached to the internal electron line
then the perturbation theory denominator is of the order ol large
energy of electron excitation from the closed shells AE;. (see
Fig. 3), and these dmgram% are suppressed. For the contributions of
the higher orders in residual Coulomb interaction there is similar
enhancement of the diagrams with the single-particle operator on
the external electron line. We call such diagrams the Brueckner
type diagrams. The diagrams with the photon field attached to the
internal electron line are called structural radiation. In the alkaline
atoms the enhancement factor for Brueckner type diagrams is of the
order of AEiu/AE...~10. Therefore to improve the accuracy of cal-
culation we should first of all calculate more accurately these con-
tributions.

[t is easy to check that the Brueckner type contributions to the
transition amplitude are completely determined by the seli-energy
operator. The technique of calculation of X is described in detail in
the Ref. [20]. Here we remind it very briefly. In the second order of
perturbation theory one can obtain ¥ by the direct summation over
the intermediate states’ of the discrete and continuous spectrum. We
have used this way in our earlier works, and the same way have
been used by the Johnson group [18]. In the recent works [20] as
well as in the present one we use the Green functions and the
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Fig. 1. Second order correction to the self-energy operator (energy level). Wavy line
denotes a residual Coulomb interaction.
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Fig. 2. Examples of Brueckner type correlation corrections to PNC El-amplitude.
Cross denotes weak interaction, dash-dotted line denotes photon field.
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Fig. 3. Non-Brueckner correlation corrections to PNC amplitude:

! a— weak interaction inside the correlation correction (weak correlation potential); &—structural
radiation.




Feynman technique. This way allows us to sum the dominaiting
diagrams of higher orders and even in the second order it provides
the better numerical accuracy.

We sum the three types of enhanced higher order diagrams. The
most important contribution is the screening of residual Coulomb
interaction. Corresponding sequence of diagrams is presented at
Fig.4. This is a collective effect similar to that in plasma. The
enhancement parameter of these diagrams is the number of elect-
rons in the external closed subshell. Use of the screened interaction
essentially improves the convergence of the perturbation theory
[20]. The second contribution is the chain of diagrams in par-
ticle-hole interaction inside the electron loop (Fig.5) which enters
into the diagrams presented at Figs | —4. This interaction is enhan-
ced due to the large diagonal Coulomb integral of zero multipola-
rity. Its importance is obvious from the following example: the exis-
tence of the discrete spectrum excitations in the noble gas atom is
due just to the particle-hole interaction. Finally the iterations of the
self-energy operator X (Figs 6, 7) gives the sizable contribution.
The iterations are enhanced since in the intermediate states the
small energy denominator corresponding to the excitation of the
external electron arises. The all other diagrams of perturbation the-
ory are proportional to the powers of the small parameter Qua/AEin
where Q.q is a nondiagonal Coulomb integral and AE:. is a large
energy denominator corresponding to excitation of the core electron.

In caesium atom relativistic Hartree — Fock method provides the
accuracy of calculation of energy levels about 109%. The second
order correlation correction improves the accuracy to 19% [23, 24].
Summation of the pointed above sequences of higher order diag-
rams reduces the error to 0.1% [20].

In the first order in ¥ (i. e. without the chaining of the Z) the
Brueckner type correlation correction to the PNC El-amplitude of
6s — 7s-transition equals [17]

(Ws1Z18Xes ) + (6W7s 21X ) + (8Y 75| 21 Wes) + (V7| 2[0Wes) . (2)

Here W is the single-particle wave [unction, 8%, X, ¥, 8X, 8Y are
the corrections to this wave function. §¥ is induced by the weak
interaction, X and Y are the positive frequency and negative frequ-
ency corrections induced by the electric field of the photon, and
finally 6X, AY are the positive and negative irequency corrections
induced by the combined action of weak interaction and of the elect-
ric field of the photon (see Ref. [17]). The results of calculations of
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Fig. 4. Screening of electron-electron interaction.
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Fig. 5. The hole-particle interaction in the polarization operator.

Fig. 6. The self-energy operator.
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Fig. 7. Chaining of the seli-energy.



the terms in the expression (2) with the operator X obtained in the
way described above are presented in the Table I.

The Brueckner type correlation corrections to the transition
amplitude can be calculated by the correlation potential method [25,
10, 22]. In this method one should add the seli energy operator
3 (r1, r2, E) to the Hartree—Fock potential: Vrleg Y B N The
equations for the single-particle orbitals and corrections to these
orbitals induced by the weak interaction and by the photon field are
solved with the new potential. The transition amplitude can be
found using these wave functions in the same way as in the usual
time-dependent Hartree— Fock method [17]. The difference between
the amplitude obtained in such a way and amplitude obhtained using
formula (2) is due to the nonlinear in X terms (the seli energy
chaining, Figs 6, 7). The corresponding value is presented in the
line 6 of Table 1.

Table 1

Contributions into the E,y.-Amplitude of 6s —7s-Transition
in Caesium in Units 107 ieay (— Qy/N)

TDHF value. The polarization of the
closed shells by the weak interaction and

by the photon field is taken into account (.886
s1={ W, 126X, ) _ 0.073
se= (W 121 X, > 0.185
Sxz=— { ﬁ}f?.: | E | li,rﬁ{‘ > i U‘.'U?4
sa={Y; 1Z16%c. > —0.141

Nonlinear in ¥ correction —0.021

The contribution of diagrams with the
weak interaction inside the correlation,
but the photon at the external electron line

(Fig. 3,a): (Y, 1831 Ws) + (W3, 1821 X ) 0.003
Structural radiation (Fig. 3.b) 0.003
The normalization contribution —0.006
Final result: The sum of all contributions (.908

There is the contribution to the E. . which is due to the diag-
rams with the weak interaction inside the correlation, but photon
field attached to the external electron line (weak correlation potenti-
al, Fig. 3,a). In the notations of the Rel. [17] this is

<¥T.¢|ﬁzﬁqrﬁs>+<qf?.-:lﬁ'z'ixﬁs>' [BJ
8
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Its value calculated in Refs [17, 18] is very small (Table 1).

The structural radiation (Fig. 3,b) and the normalization contri-
butions [17] are presented in the Table 1 as well.

In the last line of the Table 1 the sum of all contributions is
presented. This is the result of the present work.

Before to proceed to discussion of the accuracy we would like to
consider the disagreement between the results of the papers
(17, 18]. This discussion will be useful in the analysis of present

calculation accuracy. The values of E,,. in the units of
iea,- 10" (—Qy/N) are:

our earlier value [17] 0.90(2),
W. Johnson et al. [18] 0.95(5).

Within the pointed errors the results agree. However in the formal
calculation there is disagreement. Our result [17]: 0.904. The India-
na group result [18]: 0.951. It should be noted that the results
should not coincide exactly. Actually, in the Rei. [17] the electro-
magnetic polarization is taken into account in the correlation correc-
tion, while in the Ref. [18] this effect is neglected. Besides that
there are the cortributions of the structural radiation and normali-
sation in the Ref. [17]. These effects reduce the disagreement irom
0.047 to 0.03.

Fabile 7
Brueckner Type Second Order Correlation Corrections
in Terms of the Contributions to the Expression (2)
in Units 10~ "ieaz (— Qy/N)
5| 51 Fa 4 51482 Sa+ 54 S14 Sz 8
Present work | 0.123 0.197 | —0.115]| —0.144 | 0.320 | —0.259 0.061
Refl. [18] 0.321 | —0.263 0.058

We should say that in the work [17] we had not high numerical
accuracy in the calculation of the correlation correction (accuracy
was about 10% in each term). In the present work we use Green
functions and Feynman technique which give better numerical accu-
racy. We have recalculated the second order correlation correction
without the electromagnetic polarization and structural radiation.

The result of this calculation in terms of contributions to the formu-

la (2) is presented in the Table 2. In the same Table the results of
9



Ref. [18] are presented. Thus we see that formal second order
practically coincides with the result of the Johnson and collabora-
tors [18], but not with our old one [17]. The couse of small dicre-
pancy with Ref. [17] was the limited basis set used in work [17] in
the integration over continuous spectrum.

However we insist that the result of Ref. [I7] has better physi-
cal accuracy than the result of Ref. [18]. Calculation which we car-
ried out in the Ref. [17] was not pure ab initio calculation. The sta-
tement about the accuracy was based on the analysis of experimen-

tal data on energy levels, hyperfine structure, and El-amplitudes.

Let us elucidate this statement. The structure of PNC-amplitude in
terms of expansion in physical states is as follows:

(Tslr|Tp) (Tp| Hy|6s) _|_{Tslrlﬁp}{ﬁ;}le.lﬁs} e (Ts|Hy|6p) (6plr|6s) (4)
E.—FE . E, —E E;,—E, i

TP Hg- -

The other states np give rather small contribution. These three
terms have the same magnitude but the different signs. Let us con-
sider the correlation corrections. There are the corrections to the
matrix elements and to the energy denominators. The denominators
are relatively small and we would like to discuss the corrections to
them.

When we use the perturbation theory we expand the denomina-
fors. & p.

1 1 3 3

3 e e + . (5)
‘Eﬁﬁ + ZE-& o, Eﬂ;l I, Eﬁn Eﬂs _L.ﬁp {EG;' s S 12 {Eﬁx T Eﬁ-p :I -
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We can do it because the total correction to the denominator is not
very large. At the same time each term in expansion (5) is large:
2, /(Es, —Eg,) =0.4. This is the reason why the relatively small
second order correction to the PNC-amplitude arises as the compen-
sation of the large contributions. We know that exact second order
calculation overestimates the correlation correction by 5—209% [24,
20]. This is just about 1% of the energy, but due to the small deno-
minator the inaccuracy is enhanced in expansion (5).

In the Ref. [17] our idea was that we did not need the numeri-
cal accuracy of the second order to be better than the contribution
of higher orders. However keeping in mind the situation with the
small denominators we tried to fit carefully the energy levels. Ii
our ab initio calculation did not reproduce the energy level we mul-
tiplied the correlation correction by some numerical factor to fit
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energy. One can say that this is effective accounting of both the
higher orders and numerical inaccuracy in most sensitive part:
energy denominators (note that hyperfine structure and El-ampli-
tude calculations also gave better results after energy fit proce-
dure). The result of the present work with the summation of the
higher orders confirms this idea.

Accuracy of Calculation

We can estimate the numerical error of the computer codes com-
paring our evolution of TDHF value and second order correlation
correction with that obtained in Refs [12, 18]. The conclusion is
that this error does not exceed 0.3%.

The more complicated question is the physical accuracy of calcu-
lation, i.e. estimation of unaccounted diagrams. Let us start with
the contribution of an unaccounted diagrams in X. In the Rei. [25]
all diagrams of the third order in residual interaction have been
calculated for the energy level shift. The third order contributions
which are not absorbed by the sequences which we have summed
exactly proved to be about 1—3% of the correlation correction
value [20]. The maximal Brueckner type correction to the Ej,
(8W. |Z|X,, >, is about 20% of E, . -value. Basing on the experience
on energy we can estimate the error which comes from the Brueck-
ner type diagrams as 0.2—0.6%. We estimate the structural radi-
ation using the approximate formula obtained in Ref. [22]. There-
fore the error in its evolution could be about 1009%, but the structu-
ral radiation is small by itself: 0.3%.

The reasonable estimation of inaccuracy one can obtain compar-
ing the calculated values of the energy levels, hyperfine structure
intervals, and El-amplitudes with the experimental data. For the
energy levels we have the accuracy about 0.1% [20]. For the
hyperfine structure and El-amplitudes accuracy is not worse than
1% (except small El-amplitude of 7s —6p-transition) [20].

We can try to refine the calculated values by fitting the avail-
able experimental data. It was mentioned above that the E, . is
very sensitive to the energy splitting between the levels of opposite
parity ns and np. Main contribution to the amplitude depends on the
6s-, 6p-, 7s-, Tp-states (expression (4)). The corresponding energy
levels can be reproduced exactly if we introduce by hands the coef-
ficients into self energy operators calculated by us:

11



e, = 1.010%,
X, 10935,
X, — 0.978 2, _ (6)
27 > 0.970 %, .
After this procedure the theoretical values of El-amplitudes and
hyperfine intervals become somewhat more close to the experimental

values [20]. The value of E, . after fit (6) practically does not
change due to the compensation between different contributions.

Table 3

Results of Calculations and Measurements of 6s —7s PNC
Caesium Amplitude in Units 10~ "iea, (— Q, /N)

Bouchiat and Bouchiat [4] [.33
Loving and Sandars [5] 1.15
Neuffer and Commins  |[6] 1.00

Kuchiev et al. [7] 0.75
Das et al. [8] 1.06
Bouchiat et al. [9] 0.97 +£0.10
Dzuba et al. [10] | 0.88+0.03
Calculations Schaffer et al. [11] | 0.74
Martensson-Pendrill [12] | 0.886
Plummer and Grant [13] §0.71
Schaifer et al. [14] | 0.92
Johnson et al. [15] | 0.890
Bouchiat and Piketty [16] | 0.9354+ .02+ 03
Dzuba et al, [17] | 0.90+0.02
Johnson et al. [18] | 0.95+0.05
Present work 0.91 +0.01

Experiment:

values divided by
{ —Qy/N)=009207
corresponding to
sin® (8,) =0.230

Bouchiat et al. [2]
Noecker et al. [1]

0.894-.104 .07
0.904-0.02

To control the accuracy it is useful to consider the «weaklike»
expression which reproduces the dependence of E, . (4) on the
energy intervals, wave functions at the nucleus, and El-amplitudes
(see, e. g. Rei. [10])

12

A

L 4

(Tslrinp) VA, As;  (Bslrinp) YA, A; ; (7)

E:'.Es T E-n,'.: ‘E'."'s e ‘E.l.'p

=07

Theoretical values of the El-amplitudes {(f|r|i) and hyperfine con-
stants A are presented in the Ref. [20]. Expression (7) calculated
with the values of (f|r|i) and A obtained in pure ab initio way is
by 0.35% less than that with the experimental values. We would
like to note that there is the partial compensation of errors between
the terms in (7). Evolution of (7) with the parameters obtained
after fit (6) gives value by 1% less than «experimental» value. The
fit reduces the error in each term, but destroy the compensation. In
any case it should be noted that the «experimental» error in (7) is
13%:

We think that all above arguments show that the accuracy of
the present calculation is about 19. Thus the final result of the
present work looks as follows:

Epne =(0.9140.01)-10 i e a,(—Q,/N) . (8)

Results of other calculations and measurements are presented in
Table 3.

Comparison with Experiment

Measurement [l] and our calculation (8) lead to the following
value of caesium weak charge:

(—Qup/N)=0909+0.020 (exp.) +0.010 (theor.) (9)
In the standard model of weak interaction with radiative correc-
tions [27] weak charge is expressed trough the Weinberg angle:
sin¥(By) =1 — Mg /M3,
(— Qy /N)=0.9793 — Z/N -(0.9793 — 3.8968 sin%(8,,)). (10)

Using (9), (10) we obtain Weinberg angle:
sin?(8,,) =0.226+0.007 (exp.) - 0.004 (theor.) (11)

This value agrees with world average value sin®(0,)=
=0.230+0.005 [27] and has the accuracy comparable with the best
measurements of Weinberg angle.

13
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Using our new experience of high order correlation calculations
we together with P.G. Silvestrov reanalysed our old calculation of
parity nonconservation in Bismuth [28]. Now we think that it is
better to present the results of calculations [28] as follow:

Bi(A=876): FEp.=262 R=—11.0+13,
Bi(A=648): Fpye=4 ., R=—175 +5. (12)

R=Im(E,./M1) is given in the units (—Q,/N)-107% A is a
wavelength in nanometers. The values for A=876 transition differ a
little from the values presented in paper [28] (E,,.=25,
R=10.441) due to change of estimate of high order 6p—6p-corre-
lations (Bismuth ground state configuration is ...6s%6p®). The values
for A=648 transition calculated in the work [28] are presented for
the first time. Large error in this transition is due to strong cancel-
lation of dififerent contributions to E, .: TDHF amplitude is 9.9,
correlation with electron core gives — (0.5, first order 6p —6p-corre-
lation is —8.5, high orders 6p—6p-correlations give 3. Correspon-
ding contributions to A==876 transition amplitude are: 32.8, — 1.7,
—10.4, 5.5). The references on the measurements and other calcula-
tions can be found e.g. in Refs [28 —30].
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