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ABSTRACT

Three dominating subsequences of diagrams in the

correlation correction are summarized: screening of

the residual electron-electron interaction, particle-hole
interaction, and the iterations of the seli-energy.

© Hucruryr adepwnod ¢pusuku CO AH CCCP

Up to the present time the most detailed calculations of the
parity violating El-amplitude of 6s—7s-transition in Cs have been
carried out in the works [1—3]. However the progress in experi-
ment requires ‘the progress in calculations. In the paper [4] we
have developed the new technique which allows one to improve the
accuracy of atomic calculations. The value -of parity nonconserving
amplitude depends on the wave function at the nucleus and at the
large distances (r>agp). It is well known that the hyperfine struc-
ture is a good probe of the wave function at small distances and
amplitude of the allowed El-transition is a probe at the large dis-
tances. For the control of accuracy of parity nonconservation calcu-
lation in the present work we calculate the hyperfine structure of

6s-, 7s-, 6pijp-, Tpije-levels of Cs, as well as amplitudes of the
El-transitions 6s—6p,7p; 7s —6p,7p.

In our recent work [4] the energy levels of Caesium atom were
calculated with higher order correlation corrections taken into ac-
count. As zero approximation we used the wave functions and ener-
gies obtained by the relativistic Hartree — Fock method (RHF) in
the frozen field of atomic core (Vﬁ_l-apprﬂximatinn [6] ). Summa-
tion of the correlation diagrams were carried out using the Green
functions and Feynman technique. The details of calculations of the
Green function, polarization operator, and of the summation oi
diagrams are described in Refs [4, 6]. In the present work we use
the same technique and therefore we remind it briefly. The diagrams
of the second order in residual interaction for the correlation correc-
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tion to energy are presented at Fig. 1. Three types of diagrams are
enhanced in higher orders. The most important type is the screening
of the residual Coulomb interaction. Corresponding sequence of
diagrams is presented at Fig. 2. This is a collective effect similar to
that in plasma. The enhancement parameter of these diagrams is
the number of electrons in the external closed subshell. Use of the
screened interaction essentially improves the convergence of the per-
turbation theory [6]. The second contribution is the chain of diag-
rams with particle-hole interaction inside the electron loop (Fig. 3)
which should be included into the diagrams presented at Figs I,2.
This interaction is enhanced due to the large diagonal Coulomb
integral of zero multipolarity. Its importance is obvious from the
following example: the existence of the discrete spectrum excitations
in the noble gas atom is due just to the particle-hole interaction.
The third contribution is due to the iterations of the seli-energy ope-
rator X(ri, re, E) (Figs 4,5). Correlation correction to energy in
the first order in X is equal to 6e=(ZX). The iterations are enhan-
ced since in the intermediate states the small energy denominator
corresponding to the excitation of the external electron arises. The
all other perturbation theory diagrams are proportional to the
powers of the small parameter Qni/AEin: where Qn.q is a nondiago-
nal Coulomb integral and AE:. is a large energy denominator cor-
responding to excitation of the core electron.

[n Caesium atom relativistic Hartree — Fock method provides the
accuracy of calculation of energy levels about 10%. The second
order correlation correction improves the accuracy to 1% [7, 8].
(The third order correction is calculated in the Ref. [9].) Sum-
mation of the pointed above sequences of higher order diagrams
reduces the error to 0.19% [4].

In the present work we carry out the calculation of the hyperfine
structure and of the El-amplitudes basing on the approach deve-
loped in the papers [4,6]. The three pointed above chains of
correlation diagrams are taken into account. The accuracy is essen-
tially better than in calculation in the second order in residual Cou-
lomb interaction [10, 11, 8].

Let us remind the reader the structure of correlation correction.

to the transition amplitude and to the hyperfine structure
[10,11,12]. The most important contributions are given by the
diagrams where the interaction with external field (electric field of
the photon for El-amplitude, and magnetic field of the nucleus for
hyperfine structure) is introduced into external electron line
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Fig. I. Second order correction to the seli-energy. Wavy line denotes a residual
Coulomb interaction.
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Fig. 2. Screening ol electron-electron interaction.

Fig. 3. The hole-particle interaction in the polarization operator.
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Fig. 4. The seli-energy operator with the renormalizations described by the Figs 2, 3
taken into account.
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Fig. 5. Chaining of the seli-energy operator.



(Fig. 6). These diagrams are enhanced by the small denominator
AEex:, which corresponds to the excitation of an external electron. If
an external field is attached to the internal electron line then the
perturbation theory denominator is of the order of large energy of
electron excitation from the closed shells AEi: (see Fig. 7), and
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Fig. 6. Brueckner type correlation correction to hyperfine constant or El-amplitude in
the second order in residual Coulomb interaction. The cross denotes the external

Fig. 7. Correlation diagrams of the type of structural radiation.

these diagrams are suppressed. For the contributions of the higher
order in residual Coulomb interaction there is similar enhancement
of the diagrams with the single-particle operator on the external
electron line. We call such diagrams the Brueckner type diagrams,
and the diagrams with the external field attached to the internal
electron line are called structural radiation. In the alkaline atoms
the enhancement factor for Brueckner type diagrams is of the order
of AEini/AE«i~10. Therefore to improve the accuracy of calculation
we should first of all to calculate more accurately these contribu-
tions.

The Brueckner type correlation corrections can be calculated by
the correlation potential method [13, 12]. In this method one should
add the self_energy operator Z(ry, re, E) to the Hartree— Fock
potential: V e The single-particle orbitals obtained in
this potential can be used for the calculation of matrix elements of
electric dipole moment or hyperfine interaction. In this way we take
into account the diagrams presented at Fig.6 and all the diagrams
with the iterations of 2 (Fig. 5). The seli-energy operator X is cal-
culated with the screening correction (Fig. 2) and particle-hole
interaction (Fig. 3) taken into account. Thus we see that evolution
of Brueckner type correlation correction to the matrix element of
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single-particle operator is not more complicated than that for the
energy level.

Besides the correlations we must take into account polarization
correction which is due to the polarization of the atomic core by the
external electric field or by magnetic field of the nucleus. We do it
in standard way using the time-dependent Hartree — Fock method in
the external field. The details of this calculation are described in the
Refs [10,11]. Let us stress that even in evolution of correlation
correction we use the single-particle operator with the core polariza-
tion taken into account.

Tabie 1
The Hyperfine Constants For '**Cs, Units 10~° em ™!
& b £ d c+d £ I
bs 47.54 b7.19 77.40 — (.80 76.60 76.66 —0.1%
15 13.06 15.66 18.14 —0.09 18.05 18.21 —0.9%
6p,, | 5368 | 6671 9.691 0.06 9.751 9.737 0.1%
e | 1922 | 2370 3.116 0.03 3.146 | 3.147 0.0%

a— Calculation by the Relativistic Hartree— Fock method (RHF);

b— RHF + polarization;

¢— RHF 4 polarization 4 Brueckner type correlation;

d — contribution ol non-Brueckner type correlation (Fig. 7 and normalization correc-
tion) multiplied by a screening factor K=10.8.

¢ +d— Result of calculation;

e—experimental values [14, 15];

f—accuracy of calculation with respect to experiment (per cent).

The results of hyperfine structure calculations are presented at
the Table 1. The diagrams of the type of structural radiation
(Fig. 7, the hyperfine interaction inside the correlation correction)
as well as the normalization contribution we calculate by the direct
summation over the intermediate states in the same way as in
Rei. [10]. To take into account the screening of the residual Cou-
lomb interaction in the structural radiation and normalization cor-
rection we introduce the effective screening factor K,,=0.8. The
value of the factor is determined from the some explicitly calculated
diagrams. This factor is not very important since the structural
radiation is small by itself.

For the sake of analysis of the accuracy of calculation we can
try to refine the theoretical values by fitting the energy levels. The
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energies can be reproduced exactly if we introduce by
coefficients into seli-energy operators calculated by us:

S 10103,
B 008,
BT S o
27, —>0.970 27, . (1)

hands the

After this procedure we recalculate the Brueckner contribution to
the hyperfine constant. The results are presented at the column «c»
of the Table 2.

- Table '2
The Hyperfine Constants for '**Cs Calculated with

the Fit of the Energy Levels. Units 107% em ™!

. c+d f
bs 77.60 76.80 0.2%
7s 18.19 - 18.10 —0.6%
602 9613 9.677 —0.6%
7P s 3.093 3.125 —0.7%

¢ — RHF +polarization 4- Brueckner type correlation refined according lo eq. (1);
¢+ d —result of calculation;

f—accuracy of calculation with respect to experiment (per cent).

There is the radiation correction to the hyperfine constant of the
s-levels. At Za <1 its relative value is (see Ref. [15])

i_zﬂﬁ(%_lnz) ~—0.4Y . (2)

However it should be noted that in the energy fit (1) we do not
take into account the Lamb shift which has the same origin as the
correction (2). Therefore one can say that fit (1) effectively takes
into account the correction (2). Thus the Tables 1,2 represent the
final versions of the calculations. Accuracy is not worse than 1%.
We carry out the calculation of the radial integrals (amplitudes
of the El-transitions) in the same*way as that for hyperfine struc-
ture. The only difference is that instead of direct calculation of the
structural radiation we use the approximate formula derived in the
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paper [12]:
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D is the dipole moment operator. The normalization contribution

which is due to the admixing of many-body excitations is
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The results of radial integrals calculations are presented in the

Table 3.
Table-3
The Radial Integrals (E1-Amplitudes)
for Cs in the Units of Bohr Radius
a b C d c4d e f

6s—6p,,, | —6.463 | —6.091 | —5.531 0.021 | —5.510 | —5.535(14) | —0.454-0.25
65— 6Dy, | —6.430 | —6.073 | —5.505 | 0.021 | —5.484 | —5.509(8) |—0.45+0.15
6s—7p,, | —0.459 | —0.296 | —0.299 | —0.019 | —0.318 | —0.348(3) | —8=1
65 —7p;y, | —0.606 | —0.445 —0.460 | —0.027 | —0.487 — —
75s—6p, 5.404 5.450 5210 | —0.037 5.173 1? 185(27) —U.?j:[l.?
7s—6py, | 5779 | 5816 | 5636 | —0.037 | 5599 | 5611(27) | —0.240.5
7s—TPy — 1348 | —13.37 | —12.66 0.023 | —12.64 | —12.50(2 1.140.2
Ts—Tpys | —13.20 | —13.18 | —12.44 | 0023 | —1242 | —12.28(2) | 11402
a— RHF;

b — RHF + polarization;
¢ — RHF + polarization + Brueckner type correlation; :
d — contribution of the structural radiation and of the normalization correction;
¢+ d —result of calculation;
e—experimental values [17, 18, 19];
f—accuracy of calculation with respect to experiment (per cent).

Similar to hyperfine structure for the sake of analysis of accu-
integrals with
self-energy operator (1). The results of this calculation are tabula-
ted in the Table 4. Thus the Tables 3,4 represents the final results
for the El-amplitudes. Excluding the small 6s—7p radial integral

racy we

recalculate the El-radial

-the accuracy is not worse than 1%.

the refined




The Radial Integrals (El-Amplitudes)
for Cs Calculated with the Fit of the Energy Levels.

Units of Bohr Radius

Table 4

¢ c4d f
65—7p, 5 —0.318 —0.337 —3+1
Ts—6p, 5 5.246 5.209 0.540.5
7S —6py, 5.672 5635 | 04405
Ts—Tp,, | —12.62 — 12,60 0.840.2
Ts—Tpy, | —1240 | —1238 | 08+02

¢— RHF + polarization + Brueckner type correlation refined according to eq. (1)
¢+ d—result of calculation: :

f—accuracy of calculation with respect to experiment (per cent).

We would like to note that we do not understand the reason of
t+he error about 19§ in the calculation of 7s—7p-amplitude. At the
first sight the error about 1% is comparable with that about 0.5%
obtained for example for the 6s —6p-amplitude. However it is not
so. For the 6s—6p-transition the structural radiation and normali.
zation contributions considerably compensate each other:
0.021=0.072—0.051. (The sum is presented in the column «ds of
the Table 3.) We calculate the structural radiation (—0.051) using
the approximate formula (3). Therefore we may assume the error
- ~100% in the sum of structural radiation and normalization. This
is enough to explain the inaccuracy 0.5% in the calculation of
6s—6p El-amplitude. :

For the 7s—7p-transition the structural radiation is very small
(0.032 is the normalization contribution, and —0.009 is the structu-
ral radiation contribution). Therefore its approximate evolution can
not influence on the final accuracy.
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