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ABSTRACT

The contribution of the vacuum polarization to the

magnetic moment of a heavy nucleus is considered.

The leading term is obtained exactly in Zm, using the

electron Green function in the Coulomb field. This

term contains the large logarithm of the ratio %./R, R
is the nucleus radius.

© Hucruryr adepuod ¢usuxku CO AH CCCP

As known, the consideration of some quantum electrodynamics
processes in a strong Coulomb field needs to take into account this
field exactly in Za (Zlel is the charge of the nucleus,
a—=e’=1/137 is the fine structure constant, e is the electron
charge; we set h=c=1). For example, the Coulomb corrections
substantially decrease the cross section of the Delbriick scattering
[1, 2]. The Coulomb corrections are also important at consideration
of the vacuum polarization contribution to the Lamb shiit in muonic
atoms (see [3] and references cited there).

In the present paper we consider the induced magnetic moment
of the electron-positron vacuum in the field of a heavy nucleus. The
analogous induced magnetic moment contributes to the muon ano-
malous magnetic moment (see Rel. [4] where its lowest order eva-
luation has been done numerically). It contains the large logarithm
In(m,/m.) (m, and m,. are the muon and electron masses, respecti-
vely). In the lowest order the coefficient at the logarithm has been
obtained analytically in [5]. In Rei. [6] the simple way has been
proposed to obtain the logarithmic contribution in the lowest order
of the perturbation theory. The muon was considered as a point
source of the Coulomb field and the field of the magnetic dipole. As
a result, the logarithmically divergent integral arised. This diver-
gence was removed by choosing tne range of radial integration
from X,=1/m, to L.=1/m..

The corresponding large logarithm In(%./R) (R is the nucleus
radius) is also appear in the problem under consideration. In our
paper we evaluate the coefiicient at this logarithm exactly in the
parameter Zea. For this purpose we use the electron Green function
in the Coulomb field. -
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Let us pass to the calculations. Outside a nucleus its magnetic
moment ji creates the magnetic field with the potential A=gX7/r".
This magnetic field induces the vacuum current of electrons:
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where G(F, ¥’ le) is the electron Green function, which we present
as follows:
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where v, are the Dirac matrices. According to the Feynman rules,
the contour of integration over the energy e in (1) goes from — oo
to 4 oo below the real axis in the left half-plane of the variable &
and above the axis in the right one. The magnetic moment due to
the vacuum current (1) is
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This moment is directed along j: M=gji. Expanding the Green fun-
ction G(7, r|e) with respect to A and taking the linear term we get
from (1) and (3) the following expression for the coefficient g:
i
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where & =vyo(e+ Za/r) —% p. It is well known that the first term
of the expansion with respect to Za of the renormalized quantity g
is proportional to (Za)? Therefore we have to subtract from the
integrand for g in (4) the value of this integrand at Z=0. In the
following such a subtraction is assumed to be made and we take it
into account in the explicit form in the final result. After this sub-
traction we, nevertheless, have to regularize the integral in (4)
since it diverges logarithmically at small distances. We perform
that choosing the limit of integration over r to be equal to the nuc-
leus radius R. The further calculations are carried out with the
logarithmic accuracy. Therefore one can set the electron mass m. in

(4) to be equal to zero, cutting off the large distance radial integ-

ration at %.. Making in such a way we obtain the coeificient at the
logarithm exactly in Za.

Representing 1/2 as 2/(2)? it is easy to rewrite the formula
(4) as follows:
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where 7 is the orbital angular momentum operator, j=I4Z%/2,
S —voysy. Using the analytic properties of the Green function we
deform the contour of integration over e in (5) so that it coincides
finally with the imaginary axis. In the paper [7] the integral repre-
sentation is derived for the electron Green function in the Coulomb
field, which is valid in the whole complex & plane. This representa-
tion is very convenient for applications. With the help of the formu-
la (16) of Ref. [7] we get the following expression for
D(F, 71 le)=(F| 1/2*|F ) at e=iE: .
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Here Iy, (y) is the modified Bessel function of the first kind, A=r/r,
ey s s p
Ri=F/ry, y"—_QIEI\[rn /sh(s), x=nH,, A(X)ZE;(PI(I)+PI—I(XJ),

d
B(x}=E(P;{x)—P;_1(x)), P, are the Legendre polynomials,

v=1/—(Za)?. Proceeding from the integration over r to that over
r|E|, one can easily perform the integration over E which gives the
logarithm mentioned above. It is convenient to represent (5) in the
following form:

g:?—iln(%) F(Za) . (7)

It follows from the result of Ref. [5] that f(Za)—(Za)® when
Za—0. Using the representation (6) it is not difficult to obtain the
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result for the first term in braces in (5):

fi= ¥ [2000() —Re w(v+iZe) +1— 7| (8)
p=1]
where
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To evaluate the contribution fp of the second and the third terms we

)

represent the matrix element (7| 1H{FHELH(F)T) as
(a7 (FLLNZY) 7Y E(A /(&Y |7,

and2zsimilarly for (F| I/I:.%*ﬂ]2 |7y. Then we take frace over
% <matrices and integrate over directions # and f, using the stan-
‘dard-relations for the Legendre polynomials. As a result, the double
sum with respect to [, /y contains only the terms with {,=1[ («dia-
gonal transitions») and /,=I[=£1 («non-diagonal transitions»). We
gety
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where

yr=2rr Jsh(s) . ye=2Nrrafsh(t) , T=s+1 s =i —(2e)?,
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We used in (9) the symmetry with respect to the permutation i+l
_We would like to make several comments -about the way of the
integration, since this iftegration is not trivial.

First we consider the contribution fs; of the diagonal transitions.
[n. this.case all the integrals can be taken analytically. For this pur-
ipose. we integrate with respect to the variable r, and then with res-
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pect to r, using the relations ([8], pp.Sﬂll, 303):
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and the recurrence relations for the Bessel functions. Introducing
the variables T—=s-+¢ and t=s—1 and integrating with respect to
v and then with respect to T, we [inally get
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where ¥ (x) = (d/dx) P (x). The evaluation of the contribution fs2 of
the non-diagonal transitions is more cumbersome. We introduce
variables T=s-+t, y=sh (s)/sh (T) , p=\/rr. and u=\/r—/r1. Ai-
ter that we take the integral over u and then over T, using the rela-
tion ([8], p.358)

Dgo Ko(\Ja*+ b2+ 2abch (T) ) ch(uT) dT=Ky(a) Ku(b) (13)
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Here K,(x) is a modified Bessel function of the third kind. Taking

the integral over p and y we represent fso in the form
|
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=1

£|+I! I2 X
0

X [ @ (v, X) + 12D(v2, )] +3(Zat)” D(vy, x) D (v2, %) — i (x)} (14)

where I

S I'iv+iZa) INv—iZa) ! SR :
ED{v,x}-.-x v ) Fiv+iZa,v iZa:2v+1;x),

F(a, b; c; x) is the hypergeometric function,

_Ili'zai@, =141, V1.2 21/5;2,2 _(Zﬂji'm
X il Ciy onl

£ 4110



f(Za) [ (Za)? = 1 40.657 (Za)?

| 2
@ (x) :x‘*% F(ly, la; 2l5; x) . _
g at Za—0. This result determines the coefficient at the logarithm

Remind, that the function [(Za) entering eq. (7) equals In (m,/m.) in the vacuum polarization contribution of the order of
fi4fo1+ feo (see (8), (12) and (14)). Thus we obtain the value of o® to the muon anomalous magnetic moment.
the induced magnetic moment in the field of a nucleus. . The possibility of the experimental observation of the phenome-

Let us discuss the results obtained. Figure shows the depen- non under discussion requires a special investigation. However, we
dence of the ratio f(Za)/(Za)? on Za. The contribution of the non- ws~  would like to say some words concerning this problem. As it fol-
diagonal transitions to this ratio proves out to be less than 3 per lows from our consideration, the main. contribution to the induced
cent and it varies very slowly with respect to Za. At the same time magnetic moment is determined by the range of radial integration
as one can see from Figure, the ratio under discussion increaseé 5 from R to X.. Hence the mostly appropriate object for the experi-
rapidly in the vicinity of the point Za=+/3/2. The origin of such mental observation of the phenomenon is, presumably, a heavy muo-

nic atom. In such atoms the typical size of a low-lying state wave-
function is 1/(Zam,) < k.. Measuring the ratio of a hyperfine inter-
val between high energy levels and that between low-lying ones,
one can exclude the quantity of a bare magnetic moment p. One has
{0 do this since the theoretical accuracy of a bare magnetic morment
ar calculations is too low. It is worthy to note that in order to com-
pare the theoretical and experimental results, some other effects
should be taken into account, e.g., the influence of the vacuum
polarization on the muon wavefunction, Coulomb corrections to the
muon magnetic formfactor and so on. '

2¥ The authors would like to thank V.N. Baier, LB. Khriplovich
- and G.v. Oppen for useful discussions and interest in this work.
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Note that, as it follows from our numerical calculations,
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