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ABSTRACT

The cavern inertial deepening occuring after the
absorption of collapsed Langmuir waves is not taken
Into account in the existing theoretical models of a
strong Langmuir turbulence of isothermic plasma.
Meanwhile, such a cavern deepening is accompanied
by the suction of new Langmuir waves and can dras-
tically change the energetic balance of a system. In
the work presented here the qualitalive theory of
Langmuir turbulence is constructed, which takes into
account the posicollaptical effects. The spectra obiai-
ned for Langmuir waves and accelerated electrons dif-
ler substantially from those predicted earlier. An inte-
resting feature of new spectra is their dependence on
the collapse symmetry,

© Hrucruryr sdepuoit ¢pusukuy CO AH CCCP

INTRODUCTION

The supersonic collapse of Langmuir waves, soon after its pre-
diction in Ref. 1, was already considered as the most important ele-
mentary act of a strong Langmuir turbulence. Usually, it was assu-
med that, at not too small damping of sonic fluctuations, an energy
of turbulence is mainly absorbed in caverns being at the final stage
of a collapse (see, for example, Ref. 2). Only recently, it was
noticed that even more substantial energy absorption can occur in
the process of postcollaptical evolution of caverns via sucking into
them new Langmuir waves [3].

Most distinctively this effect is evidenced under the conditions,
when the intercavern distance exceeds noticeably the characteristic
length of Langmuir waves k;'. In order to avoid the onset of
caviations elsewhere, the average density of a strong Langmuir tur-
bulence W, should estimately be the same as the modulational
instability threshold W, for the waves of the energy-containing spa-
tial scale kg ', being quantitavely somewhat lower than Wi (the
extent to what it is lower is determined by the concentration of
caverns N, necessary for the absorption of an energy flux coming
into the main scale of a strong turbulence k;' from the source
external with respect to the strong turbulence). Namely such a regi-
me of a strong Langmuir turbulence is considered below. For the
modulational instability threshold the lollowing estimate is valid

Win~noT k3 rd | (1.1)
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where rp, no, T are respectively the Debye. radius, average concent-
ration and temperature (common for electrons and ions). The col-
lapse is further considered to be supersonic, which is justified, if the .
characteristic group velocity of Langmuir waves v, is much larger
than the ion thermal velocity ¢;. Using the well-known estimates for
the dispersive adding to the Langmuir wave frequency wo~wg.kérd,
one can rewrite the condition v,>>¢; in the form
' 152
IE{EQK — =¢ (1.2) 1

mi ko rp

(wpe i1s an electron plasma frequency, m. and m; are masses of an
electron and ion respectively). In the process of a supersonic col-
lapse an energy density W..(a) of Langmuir waves in the central
part of the cavern increases inversely to the cube of its size a, the
perturbation of ions concentration /(a) is given by an estimate
|fi(a) | ~norp/a® and an energy density Wis(a) of a directed motion
of ions, removing out of the cavern by the trapped Langmuir waves,
| fla) |
oy
By the moment of absorption of Langmuir waves initially trapped
by the cavern, its size decreases down to the value g;<ay=~Fki'.
In this moment the value Wi..(a) is ao/a; times larger than that for
the energy density of a sound with a wavelength a; and an ampli-
tude |7i(as)| ~nord/af. After the absorption of primary Langmuir
waves the cavern is continuing to deepen inertially during the time

Weola) and grows as a=°.

is of the same order as the value

r,r»uﬂ and achieves the depth
t‘:‘.

i~ (22) "1 (1.3)

far

The estimate obtaned is justified under the condition We..(a;) <noT,
i. e. at

koaj=(korp)®*. (1.4) *

Otherwise, an electron nonlinearity is developed, which changes
qualitatively the collapse dynamics {4]. The condition oi smallness d
for the ion nonlinearity |i:| <« ny is somewhat soiter than (1.4):
ko ay=>(ko rp)*s. (1.5)
4

For the time of the cavern postcollaptical deepening the free
Langmuir waves transmit to it the following energy

#F ¢ ~vgtias Wo~g ™ ' koa; Woad (1.6)

a noticeable portion of which can be absorbed. An energy trapped
when the cavern is formed and absorbed at the final stage of a col-
lapse is equal to

‘é}“nwiﬁ’ﬂpg. l:l?}

The postcollapse absorption of an energy can dominate at
Roap>g. (1.8)

At koaj=Cg an energy %, does not exceed %o, but it is absorbed by

the slower, than during the collapse, electrons and can significantly
change their distribution over the velocities. From further considera-
tions it will be clear that the diffusion of electrons on Langmuir
waves sucked into caverns after the collapse should be taken into
account at :

koa;=g"". (1.9)
If

me)ﬁf_lﬂ

k.}rﬂ{q( e (1.10)

there exists a domain of parameter koaq; values

T (korp)? P ko g*7, (1.11)
where both the electron nonlinearity and electron diffusion on the
postcollaptically absorbed Langmuir waves are negligible.

In the region (1.11) the hypotheses are justified, which are the
basis of previous models of a strong Langmuir turbulence. The
spectral density of wave energies in the so-called inertial range of
scales

ko€ k «g:kf=af"'

is determined in all these models in the following way. The inverse
deepening time for the cavern of a size a~k™' is estimated as a
growth rate for modulational instability of trapped waves:
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( wp is an ion plasma [requency).

Taking into account an independence of the number of caverns,
whose dimensions became smaller, than &~ per time unit, one can
easily evaluate the concentration Nc. (k) of caverns with the sizes

of order k~! and average energy density W(k) of Langmuir waves
with lengths of the same order:

{ g ?fnad{kﬂ;‘ e n E H ]. 13
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Here, II is the density of energy flux coming from outside to the
main scale of a strong Langmuir turbulence. The assumption men-
tioned above of a large distance between the neigbouring caverns
(Neao (ko) < ki) is valid at

M < Ho~Ymod ko) & o k3 ~Roc: noT(ko rp)”. (1.14)

Within the dissipative range (k=k;) a number of different wave
spectra were predicted. Also varied were the predictions for the dis-
tribution of electrons accelerated by the turbulence in the region
v vi=wpa; (the electrons with velocities v>»v; were practically
absent in any model). A thorough analysis [3] revealed the cause
of these disagreements and proved the conclusions made in Rei. 5
(to be more exact, in its part devoted fo the supersonic collapse).
According to [5], the function W (k) decreases exponentially deep
into the region k>>k;. Correspondingly, the concentration n.(v) of
electrons with velocities of the order of v« vs(f) does not practi-
cally depend on time and remains to be the same as that at
vi(t) ~v. The concentration n.(vf) of electrons accelerated in the
given moment was found from the coincidence condition at k~k; oi
the modulational instability growth rate ymea(%k;) with the decrement
of Landau damping

Yi(k) ~wperte ( ‘z) /no. (1.15)

As a result, one has the following distribution qi electrons

g
Tmnnﬁ(—‘—' ) _ 372 =t -
ne{ﬂj mnﬂ_.__dmnﬂi (Uﬂ) : ﬂnz%ﬁ, U Uy, ([1{))
0

LU Up u
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The law for the shiit of electron aceleration front vf(f) into the
region of large velocities is determined by the diffusion equation:

L Doy, D(o)~ 2 (L) (1.17)

and for the time-independent energy flux II turns out to be quadra- |
tic: !

vi(f) oo 2. (1.18)

When the growing velocity v;(f) achieves the value v;, ~g*7v,, cor-
responding to the limit of applicability for the second inequality in
(1.11), for electrons with velocities of the order

Uy e 10,7
vmi~vp () ~g""o0 (1.19)
g

the time of diffusion on the postcollaptically absorbed Langmuir
waves becomes equal to the time of v;(f) variation. Further evolu-
tion oi spectra for waves and particles is strongly influenced by the
postcollaptical effects.

2. POSTCOLLAPTICAL EVOLUTION OF CAVERN

Let V(r) be a characteristic velocity for a directed motion of
ions at a distance r>a; from the cavern center at the moment of
absorption for primarily trapped Langmuir waves. This velocity is
acquired by ions under the action of pressure gradient of Langmuir
waves mainly when the. size of their collapsing bunch estimately
cmipsides with r value (that takes place during the time of order
Ymea(r ~')). Whence one has the estimate -
mr__ﬂf;:j:&_,} cor=52  (aCrcan) . (2.1)
The perturbation of ion concentrations 7i(r, Q) at the moment when
the collapse is completed can easily be evaluated from the
continuity equation:

V(ir) ~

Vir) b

| ﬁ(r‘, U) l o~ m ~n r_2 (ﬂf{r%ﬂu} . {2.2}

During the time < (Ymod(@] ) sCT<CTy) after collapse completion the
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perturbation of the concentration 7i(r, ¥) changes noticeably due to
inertiia[i motion of ions in the region determined by the condition :
TE"i’md(r_]):

| rca.(t) =aoko ¢ T)*°. - (2.3)
Here the following value of |7(r, ©)1| is achieved:

Vi)t

| (7, 0) | Prmoa(r ™ 1) Too = (2.4)

Iﬁ{r, ’f} | ~ P

For further considerations the sign of the value 7 (7, ) is impor-
tant, which, apparently, is opposite to the sign of div V(r). An ave-
rage over the angles value of div V(7) is negative, since the radial
component of ion veloocity is positive and decreases with the
growth of r faster than r~* (see (2.1). Correspondingly, the value
(7, 1), averaged over angles, is positive. If the cavern is assumed
to be centrally symmetric, then aiter the collapse the barrier would
appear around, which practically unpenetrable for the Langmuir
waves. Though, actually, the cavern is flattened in some direction z.
The calculation shows that for the self-similar solution [6] the
value div V(7) is positive throughout the entire plane z=0 and in
the embracing the plane solid angle of the order of unity. Consequ-
ently, in the barrier, surrounding the cavern after collapse, the slit
remained wide enough for the Langmuir waves— plasmons —to
penetrate into the cavern from the outer space. The noticeable pro-
bability of reaching the cavern exists only for plasmons with not too
large «orbital momenta» [~1 with respect to cavern center, as at
> 1 the «centrifugal barrier» in the Schrédinger equation descri-
bing plasmons (see Ref.-1) is substantially higher than the «attrac-
ting potential» {2.2). In the region r<Za.(t), where an attracting
potential has the form (2.4), the motion of plasmons becomes qua-
si-classical and they acquire large orbital momenta. The typical
wave number of plasmons ilying at a distance r from the cavern
centre one can evaluate as follows:

= 1/2 3,4
) R~ L4 28] arcrsan, (2.5)

fAopfp

and an orbital momentum [(r, 1) —as k(r, T)r. The number of
bound states, where plasmons are localized at distances of order r
from the cavern center mainly, is estimately equal to

N(r,©) ~{ k(r, ) r]® [ g.4%) o ¢
s T) o~ F‘,T;II ~1 1+ : B aps=rs=dop. {26-}

The function N(r, t) decreases over r, which corresponds to the
localization of the majority of the bound states in the region r~ay.
The total number of bound states

N(z) ~N(aj, T) N[E*ii“l]w (2.7)

aj

increases with time up to the moment t;, when a.(t) achieves the
value a. (t7) ~(aoaf) /3, and N(tv) —its maximum value:

i .3“.
N(zy) N(E) (2.8)

Then the perturbation of concentration starts to damp and, gradu-
ally, the bound states are pushed out from the cavern.

In the axially symmetric cavern the projection m of a plasmon
orbital momentum on the specified direction is conserved. Therefore,
it is of interest the number Nn(r, 1) of localized at distances of
order r irom the cavern center bound states with a fixed value m
and, especially, the number of states with m=0, +1, into which
the plasmons are mainly trapped. For Na(r, 1) the following esti-
mate is valid

N(r,7) a.(x) T4
Nn(r, 7) i{r,1) N[1+ r ]

m=0; +1; ap<r<ao. (2.9)

3. TRAPPING OF PLASMONS

The probability for a plasmon to be trapped by the deepening
cavern depends essentially on the parameter woTiap, where @p is a
typical dispersive addings to the frequency of a free plasmon, Tirap
is the time for its sucking into the cavern to the depth of order wo
over the frequency. At wotiqp< I, most of plasmons flying against
the cavern are trapped. At weTiep>>1, the main part of the flux pas-
ses freely above the cavern and only plasmons of sufficiently large
wavelengths are trapped. Under the assumption that the spectral
dersity of turbulence energy W, is estimately the same within the
entire region k=Cko, for the long-wave plasmons the following esti-
mate takes place:




W(k) ~k W.,n—«(-g—)sﬂ?(kg} U ke (3.1)

i

Into every new b-Olll’lld state the plasmons are trapped w_tgh wave-
lengths of order ks, (located in the volume of order kiq around
the cavern). Their energy

Z trap~Riray W(kirap) ~ko* W(ko) ~% o (3.2)

does not depend on a certain value of kiap< ko and estimately is
the same as the energy absorbed via the collapse. Because of a
large number of states sucked into the cavern, the postcollaptical
absorption of an energy dominated obligatory in the regimes with
mﬂTrrﬂpﬁ"l-

The evaluation of «trapping time» tu., depends on the cavern
symmetry. Since the question of stability for the axisymmetric
self-similar regime of supersonic collapse of Langmuir waves. [6] is
not yet solved, one has to consider two possibilities. At axisymmet-
ric cavern the projection m of a plasmon orbital momentum on the
specified direction is the integral of motion. The probability for plas-
mons to be trapped into the state with |m|>1 is low, since the
wave function of such a state, even at a bound energy close to zero,
is localized within the region r<a,, into which free plasmons with
Im|>1 do not penetrate because of the centrifugal barrier. The
number of states with |m| <1 sucked by the cavern during the time
t after collapse is approximately equal to

3/2
No(ay, ©) N[ﬂ‘é:)] : (3.3)

Taking into account that one bound state localized in the region
r~ao exists always, the time 14, for sucking plasmon to the depth
of order wg one can evaluate as

TeraplT) ~

T
Nﬂ (ﬂfr T}

~Vmod (@) (3.4)
In this case, the condition of «sharp» trapping wet«ep<1 has the
form

koas < g% | (3.5)

In the essentially nonsymmetric cavern the wave function of
practically every state with a bound energy close to zero contains
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mainl, small orbital momenta I and, to a noticeable extent, is
removed out of cavern. Therefore, in fact, all the states sucked by
such a cavern are populated by plasmons and the time t4a, has to
be evaluated as follows: ;

: 3/4 :
T ﬂlf ey | o
erap(T) N{aj, T [a,{‘r}] Vmod (4]) - (3.6)

In the beginning of the postcollaptical evolution of the cavern Tiqp
coincides with v,edai"!) and the sharp trapping condition (3.5)
remains to be valid. Further, t4q,(t) decreases proportionally to
=2 and by the moment t; it achieves the value

1/4
nﬁﬂ~@ﬂ?@@ﬂf (3.7)

a

The corresponding to (3.7) condition of sharp trapping is slightly

softer than (3.9)°

koay< g’ (3.8)

Under the conditions, where (3.8) is satisfied and (3.5) —not, the
plasmon trapping at the initial stage of postcollaptical evolution of
cavern proceeds «slowly» or «adiabatically», while at t~7; the trap-
ping is sharp.

1Fm' the evaluation of a size of the adiabatic trapping region
kiwap > ki ' it is enough to note that the small displacement of cor-
responding to the virtual or weakly bound state pole of the scatte-
ring amplitude of plasmons on cavern in the plane of complex wave
number & is proportional to a little deepening of cavern 8n(a;, T)
and, consequently, to the time &t during which this deepening is
occured. The trapping length k., is found from the condition of the
given pole displacement by O0k~kiq, during the time of flight

8t~ ! (kiap) Of @ plasmon with a wave number k~k:.qp above the

cavern:

2
k_tmp"“-‘ak*""-‘kn} 8t o ko 5 kq ( ko ) :

Tirap Tirap m{k:mp} Uy Tyrap krmp

Whence,
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plasmon to be detected in the central part of cavern is inversely
proportional to the scale of plasmons localization region’ (since
beyond the cavern the probability density drops as r—?).

4. ABSORPTION OF TRAPPED PLASMONS

An energy of each plasmon is distributed between various spati-

al scales including also those, which are lower than a;. It is neces-

sary to know this distribution for evaluating the Landau damping
of plasmons. The character of the sought ‘for distribution in the
region of scales, which are small compared to the main energy-con-
tent one, practically does not depend on the value of the latter.
Therefore, for obtaining the ‘most general picture, it is reasonable to
consider plasmons with the sufficiently large energy-content scale
rg. Within the region rg _>r>a.(r), where the atlracting potential
has the form (2.2), the probability P(r, ry, ©) for a plasmon to be
detected at a distance of order r from the cavern center is defined
by the following chain of estimates:

aP(r, ry, ) r
. P ] ] it £ 2. .
(r, rg,T) ~7 = oo s cor (4.1)

The behaviour of the function P(r, reg, 1) in the region ar<<r<Ca. (1),
where the potential has the form (2.4), depends on the symmetry of
caverns. At the presence of axial symmetry, the expansion of the
plasmon wave function over the spherical harmonics at a distance r
from the cavern center contains (with estimately the same weights)
of about I(r, T) ~&(r, 1) r terms, hence,

Plr,rg, t)col(r, 1) cor?,  apSra.). (4.2)

*
k(r,1)

In an essentially nonsymmetric cavern the projection of an orbital
momentum is not fixed and the number of harmonics, existing (with
estimately the same weights) in the expansion of the plasmon wave
function at a distance r from the cavern center, is approximately
equal to /*(r, t), correspondingly,

Py, rg. 1) oclr ).

cor®t  apCrgal(t). (4.3)

k(r, )
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As already mentioned above, the probability P(r, re,t) has a
meaning of an energy portion, contained at distances of order r
from the cavern center, for a plasmon, whose main scale of location
is equal to rg. Since each scale r has its corresponding characteris-
tic wave number £(r, 1) (see (2.5)), the distribution P(k,re,T) of
the plasmon energy in the k-space can be obtained from P(r,re,7)
by a simple replacement of r by the function r(k, 1) inverse to
k(r, T). With such a replacement the relations (4.1) — (4.3) obtain
the following form:

Plk,rg,t)co k™%, r;l%kga._l[r] : (4.4) |
Plk,rg,T)cok™81, e (4.5)
k k ﬁ_fz ; :
P(h,rg,t)co k5" s AREER AL @) (4.6)

The estimate (4.5) relates to the axisymmetric and (4.6) —to the
essentially nensymmetric caverns, respectively. :

The main contribution into the Landau damping of the trapped
plasmon is given by those values of &k, at which the product
vi(k) P(k, re,T) achieves its maximum. This maximum is located in
the region kyCk<Cku(t) beyond which one of the factors (at £ k;
it is y.(k), and at k> ky(t) it is P(k,re, 1)) is exponentially small. If
the function y.(k) increases in the region kpCkhk<Ckm(t) faster than

1
Plk,re,1)’
by the wave numbers &2~ky(t), if slower, then—by 2~k;. An analy-
sis shows that the second proposal does not allow the seli-consis-
tent description of eleciron acceleration by the Langmuir waves.
Accepting the first alternative, one can evaluate the plasmon dam-
ping decrement as

the mairi contribution into the plasmon damping is given

I(rg, ) ~y(km(t)) Plaj, re, T) . (4.7)

The absorption of a plasmon sucking by cavern occurs at such a
scale of its localization re =raps{t), at- which the inverse time
'rs;]k(r?,r) of decreasing re by a factor of 2 turns out to be of order
of I'(rg,T): '

T(abs, T) ~Touck (Fabs, T) - (4.8)

This relation establishes the connection between the radius of plas-
mon absorption in cavern rus(t) and the distribution function of
electrons over velocities (in terms of which the Landau damping

13




decrement y (k) is easily expressed (see (1.13)). The sucking time
Tsuck(r#,T) can be evaluated in the following way. For this time the
plasmon frequency is decresed by

| irg. 1) |

B ~ 0 ge : (4.9)

flp

In terms of the Schrdodinger equation 8w can be considered as an
increase of the plasmon «bound energy» in cavern during the time
Tsuet(rg,T). From this point of view it is clear that dw is estimately
equal to a decrease in the plasmon «potential energy»:

‘ ﬁﬁ'[!‘l_r, T

) ~ge ) Haj, rg,1) . (4.10)

flg
‘Here, |8n(a;, )| is the cavern deepening in its central part during
the time twci(re,t). According to (2.4),

|6E(ﬁf, T'.:] | ~ |ﬁ{uf1 U'J | ’;’mad'::af l} Tsuck{rg, T:] : (4.1 l}

The substitution of (4.9) and (4.11) into (4.10) results in the esti-
mate '

gy 1Alay 0}

TSL-L (e, T} N‘Pmad(kﬂ' Play, re, ). (4.12)

727 . T) |

Taking into account the condition of the collapse ceased at a cavern
size aj:
Vmod( k) ~V (k) (4.13)

and also the estimates (4.12),- (4.7), one can rewrite the relation
(4.8) in the form

| ilay, 0) | Yo (Ru(t))

|ﬁ{ruh8:T}| ’ "I’L{kf.] ; {4‘14}
It noticeable, that the cavern symmetry dependent probability is not
included in (4.14). In this sense, the given by (4.14) relation of the
plasmon absorption radius in cavern with the distribution function
of electrons is universal:

T(Ry(T)) L
Taps (T) ~ {m[ o (k) ] : Lo Jhctpcinie (4.15)
af[ Yi {kM [T}} TI :UT! Fabs [T] =d. [T} .
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At T~Vmos(k;) the values a.(t) and ras(t) coincide with aj, and

at ?";:;(kf) <171, according to (2.3) — (2.5),
a. (t) cot??,  ky(r) cot'’h (4.16)

Therefore, the first of the alternatives considered in (4.15) is rea-
lized in the case, when the function y.(k) increases in the range
RCh<Cky=ky(t;) faster than £°%° and the second one—if slower
than £%/3.

5. STRONG LANGMUIR TURBULENCE SPECTRUM

In an inertial interval of scales kg k< Rk} an average energy
density W (k) for the Langmuir, waves with lengths of order 27! is
determined by the collapse and has the form

Wi(k) ~F o cas o) 122E). (5.1)
".’rr.'orﬂ:_k}'

Within the region kj< k< ku=ku(ts) ~kiki/ko)'’* the value W(k) is
determined by the postcollaptical effects. Let W(k, t) be the contri-
bution into W(k) of Langmuir wave localized in cavern with the
postcoliapse lifetime of order 1, N.o.{(t) be the concentration of
these caverns, and & (k, t) be an energy of localized in each of the
caverns Langmuir waves with lengths of order £~ Then

Wik, ©) ~Neao(t) Flk, 1) . (5.2
For N (1) the following estimate is valid
-'ﬂmv(T) "‘*‘Nmr_-{kﬂ) T’mm.{(k{&) T""""Nﬁﬂu(kf} ?mna{kf) T. . {5,3]

An energy & (k, t) estimale depends both on the regime of plasmon
trapping and the cavern symmetry. In the regime of sharp trapping
of plasmons a noticeable portion of energy flux flying upon the
cavern is absorbed, therefore,

Yr(km(t)) F(Rp(t), 1) ~wp& . (5.4)

In the regime of slow trapping of plasmons, each bound state gets
an energy of order &, therefore,

ve (ka (1)) F(ky (1), T) ~ Tiap(t) Fo. (5.5)
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The relations (5.2) — (5.5), (1.15) enable one to express the
energy density W(ku(t),t) via the distribution function of electrons
accelerated by the turbulence:

Wik ~F N ool ) Yot RD) T :
II: M{TJST} %Qn { f:] vL{kﬁf(T}} 1+mut-‘fﬁﬁ{t} {5 6}

Since all the bound states with a scale of localization r<Cras(t) by
the time moment t are already exhausted by the Landau damping,
in the region ku(t) =k =k(rapdt),1):

Wik, 1) co Z(k, T) 00 PR, rapdT), 1) (5.7)

and, hence,
WI:R, T]I ‘P[.r {k; t}? rﬂ-”-‘(T}r T}

Wik (7)., T) Play, rapsT), 1) ~Play, ik, 7),7) . (5.8)

At k(rus(t), t) > %>k the main contribution into an energy den-
sity Wk, ) is given by the states with the scale of localization
r(f, T) > raps(t), where plasmons are not damped yet. In this region

—1 Wy Fo
s k: » & k: gt - 2.9
Tsuckl? (R, T),7) (R, T) SR (5.9)

and, according to (5.2), (5.3),
Wik, ) ~F o Neaol i) Vmodly) 7 2kl (B D). T) (5.10)

1 + mﬂT{rap( t}

The relations obtained enable one to represent the energy density
W(k) =max W(k,t) (k>k;) and, hence, the coefficient of electron

diffusion on Langmuir waves D(v)~ r:: W’(MT“) in terms of the
. eref)

electron distribution function and, thereby, to close its evolution
equation. An analysis shows that self-consistent solution of this
equation for the function W (%, T) increasing over 7, i.e at
Wi(k) ~W(k, 1), is impossible.

Let ~the. function W(k, ©) decrease over 1. Then,
W(k) ~W(k, tm(k)), where 1,(k) is the smallest of those t-values,
at which in the cavern there are plasmons with the wave number
given k(kj< k<Cky). The function t.(k) is evidently an inverse with
respect to k=*ky(t). Therefore, for the evaluation of W(k) it is sul-
ficient to substitute v=1.(ku(t)) into (5.6) and replace ku(t) by k:
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W(k) ~Z o Neaolky) N e (R hThy) (5.11)

Whence, in the regime of sharp trapping of plasmons (®oTse,< 1)

¢ 2
Wik TmlR) k
( )N PlR) = Yo (k)

(R kCh) . (5.12)

Under the assumption that most of caverns are axisymmetric, the
funclion ti4,(t) does not depend on v (see (3.4)) and the relation
(5.12) remains to be valid at the adiabatic trapping of plasmons. H
the typical cavern is esentially nonsymmetric, then t,q,(t)cor™'/2
(see (3.6)) and at adiabatic trapping of plasmons (wgtyep>>1):

3

Wik
jkad ey

(R k<Thy) . (5.13)

6. THE SCENARIO OF ELECTRON ACCELERATIUN

The acceleration of electrons by Langmuir turbulence is describ-
ed by the quasilinear diffusion equation and is going on much slo-
wer than the processes of collapse and further evolution of caverns
described above. For the characteristic time f;(v) of the diffusion of
electrons with velocities of order v the following estimate is valid

fi) ~ D~ (L) (6.1)

o Mgl v

Within the applicability region &(1.11) for previous models of
Langmuir turbulence :

ve(R) o kY%, k> k. (6.2)

(see (1.15), (1.16)). The plasmon trapping by the caverns is sharp
for the given range of parameters and, in virtue of (5.12),

W(k) co k2, ki kaThy . (6.3)

.The typical time for electron diffusion #;(v) increases within the

i CWpe @Dpe ;
interval v,Sv<€ v {v;=—é—, Ungi-;ww(u;;’vn}”‘} as v*/%
file ' N 2o\ /8 ¢ o\ 572
DA e
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In the vicinity of a wave number k~#&; the turbulence energy den-
sity W(k) decreases sharply (exponentially) over k& from the value
of W(kj) ~Ncul(ks) o, determined by the collapse, down to the
value of energy density of postcollaptically absorbed waves, calcu-
lated by the formula (5.11) with k=Akj(A=2-=3):

; [LLTy]
W{ﬁkﬂ NNguv(kj}l Zo NEDT, ;

An inverse time of electron diffusion ¢#;'(v) is decreasing by the
same factor at v~uy

o)~ @a [ s : 6
LAAD)  Ymoulky) e (E'u) : 1954

Electrons have not enough time for the diffusion on the postcollapti-
cally absorbed waves under the condition {;(vn,) > fs(v;), which
(via (6.4) and (6.5)) is reduced to the right-hand side inequality in
(1.11). When the velocity uv;(f), increasing according to (1.18),
attains the value uvy~g®7vy, in the vicinity of the velocity
Um ~g'%"vy the second front of electron acceleration is formed. Its
position v;({) at uft) =uy is found from the condition #4(75) ~ta(vf)
and is given by the estimate

3/5
Gi~g =" (—’) o (6.6)

Uy

Within the region v;> v > v; the diffusion is proceeding slowly and
electron concentration n.(v) remains to be the same as it became
after the first acceleration (see (1.16)). In the region vj=v>vn the
time of electron diffusion should approximately be the same as
ts(vs), otherwise, it is impossible to construct the seli-consistent
solution. The condition #,(v) ~ts(v;) of the function (6.1) indepen-
dence on the velocity means that

Wk)oo k™2  kysksk=—X, (6.7)

Uy

According to (5.12), in order to obtain the given wave spectrum,
the following condition should be satisfied y,(k) co k?, i.%e.

alolecr™, v.CusH;, : (6.8)

In the region v < v, there is no diffusion, i. e. the concentration of
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electrons remains invariable after the rear front of acceleration
vm(t) passed through the velocity v. At vam(f) =vm:

4
feUm) ~ne(T5) (%) o0 5?"’2:.!,}{4@\'3 g &0

with the time-independent propotion factor, hence
R ) R o R e (6.9)

The law for motion of the first front of electrons acceleration v({)
is found out from the diffusion equation (1.17). While, v;<Cguv,, each
cavern absorbs an energy of order %, therefore, at a constant
energy flux II coming into a strong Langmuir turbulence, the
cavern concentration Nc,(ko) is time-independent and the relation
W(k;) coki ¥ ?covi’? and the law (1.18) are still valid. At vy=guvo
the postcollaptical absorption of energy dominates which value is
proportional to u; in the regime of the plasmons sharp capture (see
(1.16)); the cavern concentration Neo.(Ro) at an energy flux II
given decreases with time as vj~', and the diffusion coefficient D (vy)

grows as vj’”:

D(v;) co W(ky) co Neau(Rf) 00 Ri 32 Neal ko) 00 R '* 0o v 2,
In this case, from (1.17) it follows that
vi(t) oo P Vi =8Uy. (6.10)

The picture described above remains correct unless the second front
of electrons acceleration of{t) caiches the first one, which occurs at
v(f) ~Uye: |

Ujg~g" 00 (Uma~8"""v0) . (6.11)
By this moment, an increment of modulational instability at the
final stage of a collapse ymoa(k;) is decreased down to the value we
and the plasmons capture, at least, at the beginning ol the cavern
postcollaptical evolution ceases to be sharp. The further scenario of
electron acceleration depends on the dominant symmetry of caverns.
At vft) >vp the diffusion of electrons proceeds equally fast over the
entire region v,<Cv<Cv;, which means that

W{:’E) ook 2, RS h<CThky. (6.12)

In the case of the axisymmetric caverns the relation (5.12) is still
valid for the adiabatic capture of p_laSmﬂns, hence, in the region of
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electron diffusion the following distribution is established
nfv)cov™ UnCUTY;. (6.13)

In the region v<Cv. there is no diffusion, i. e. the concentration of
electrons does not vary after the rear front of acceleration vn ()
passed through the velocity o:

n{0) 0T, VO (6.14)

At this stage of evolution the law for the electron acceleration front
motion v;(f), (defined by the diffusion equation (1.17)) turns out to
be exponential. Indeed, at adiabatic capture of plasmons an energy
absorbed by one axially symmetric cavern is of the order

3/2
Z o Nolay, 1) o [ﬂ] coai 2oouf 72,
ay

Therefore, at a constant flux of energy Il coming into the strong
turbulence, the concentration of caverns WNg.(k) increases with

time as v}/ and the diffusion factor D(v;) —as vf. From the equati-

on %U%C\SU? it follows that

Invi(f) cot, vill) Zuvp. : (6.15)

This picture is valid until the inertal interval is vanished, if vg is
less than the light velocity ¢. If 79>>c¢, the inertial interval cannot
vanish and vu; achieves (with time) the relativistic values, for which
the diffusion equation in the form (1.17) is not applicable. An
analysis revealed that in this case the system comes to the regime
of relativistic electrons storage. Since the detailed description of this
regime is beyond the scope of present article, further it is assumed
that vo<<c.

In the case of essentially nonsymmetric caverns the scenario of
electron acceleration turns out to be somewhat more complex due to
-the existence of a relatively narrow transitive region

vp i) <vp=2""v0 (VmSunl) <vm=g""v0) , (6.16)

where the capture of plasmons at the initial stage of postcollaptical
evolution of a cavern is adiabatic and at the final stage it is sharp.
The regime of plasmons capture changes at wgTiap(t)~1, which
means that (faking into account (3.6), (2.5)) ku(t) ~k:
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In the region k;%k«gﬁlthe main contribution into an energy density
is given by the adiabatically captured plasmons. By virtue of
(6.12), (5.12), (5.13), (1.15), it follows that

ndvy oo™, oS i= m; :
nfv)oov™t, v >Um. (6.18)
With an increase in the velocity v;(¢) from up up to vp, the velocity
1/2
- Ope Vo s
5= 22 gaﬂ(ﬂf) (6.19)

F o

decreases from uvp down to v,3, in other words, the electron distri-
bution reconstruction wave passes along the region of diffusion in
the direction from v;(f) to vm(f). In the region v vn(i) the con-
centration of electrons is time-independent and remains the same as
it was at vn(f) ~u:

nloyes v Y% " valUBUM. (6.20)

A major part of energy is absorbed by caverns at the final stage of
their postcollaptical evolution via the sharp capture of plasmons,
therefore, the dependence of caverns concentration on ov;(¢) remains
the same as previous and u;(f) continues to grow by the law
b. 10},

[ Upon reaching the value v by the velocity vj(¢) the capture of
plasmons becomes adiabatic even at the final stage of the caverns
postcollaptical evolution and for the entire region of diffusic the
first distribution from (6.18) is established. At v{{)=vs the dis’ri-
bution of electrons has the form: -

n{v)oov >,  UZUSUm,
nlv)cov ™, UmZUZUm3. (6.21)

An energy absorbed by a single cavern in this regime is estimately
equal to

9/4
o Nl 17 69 [a. (tf}] coai ¥t oo Uf—afq ;
ag
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Therefore, at a constant power supply Il to a strong turbulence the
concentration of caverns N..(ky) grows with time proportionally to
vj’* and the diffusion factor D(v;) —proportionally to vj/*. At such
a dependence D(vs), from the diffusion equation (1.17) the explo-
sive growth of us(f) follows:

of) co(be— 1) %,  vi>up. (6.22)

This regime is kept until the inertial interval is vanished.

7. CONCLUSION

In searching the wave and particle spectra described above a
number of assumptions were used that were formulated explicitely
or assumed. The result obtained justifies all asumptions taken, in
particular, the cavern postcollaptical deepening turns out to be
really inertial, i. e. practically not affected by the sucked Langmuir
waves, and modulational instability of these waves has not enough
time to be developed during their presence in the cavern. Quite
numerous (and therefore, not considered in detail) alternative vari-
ants of assumptions were also analyzed, in fact, but no other
self-consistent solutions were found.

As is seen from the content of this paper, the postcollaptical
effects can be neglected only at an early stage aof the accelerated
electrons «tail» formation. Nearly all the energy contribution into a
strong Langmuir turbulence occured at the later (and longer) sta-
ges, when the postcollaptical eflects dominate and change qualitati-
vely the wave and particle spectra. The most remarkable difference
irom the predictions of previous models of a strong Langmuir tur-
bulence is in the dependence of the form (and even total energy) of
accelerated electrons «tail» on the symmetry of majority of caverns.
The versions of electron «tails» corresponding to axisymmetric and
essentially nonsymmetric caverns, which is formed by the moment
of the inertial interval vanishing, are given by the estimates (see

§6):

; Yo

3 2 - .
ndo) ~mo - (), 0>0>g"%0; (7.1)
U .
i Uy o B5/7 :
n0) ~no< (22) 7L vizvg . (7.2)

(e
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In the region g*%vo>v=g'""ve (for axially symmetric) or
g0y >v=>g"""v, (for nonsymmetric collapse) the final concentra-
tion of electrons with velocities of the order of v has the form

: 4/5
ne(v) ~to - g~ (E) ' (7.4)
1

U

In the region g'""ve=vu=uelkerp)®® (existing .under condition
(1.10)) the prediction of the previous models of a strong turbulence
is still valid:

n{v) ,.,,m,_f_f (ﬂ) o (7.4)

The total energy density of electron «tail» in the case of axisym-

metric collapse is mainly determined by the region ve=v=g"" v,
and estimately is equal to:
W ~ngmecivo In g . (7.5)

In the case of nonsymmetric collapse the major part of the «tail»
energy is concentrated in electrons with velocities of the order of
2%"vg and is estim: tely equal to:

W ~nome.civog'’". (7.6)

In fact, the diiference in values of (7.5) and (7.6) is minor, but in
principle, there is an interesting possibility to discuss the Langmuir
collapse symmetry using only on a macroscopic parameters of
system. It is also quite difficult to distinguish the distribution (7.1)
from (7.2) experimentally; much simpler is to distinguish them from
the distribution (7.4) predicted earlier and, especially, from (7.3).
The detection of characteristic break of the accelerated electrons dis-
tribution function between section (7.1} (or (7.2)) and (7.3) is,
probably, the most accessible way of experimental verification of the
presented here theory. : :
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