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ABSTRACT

A possibility for destruction ol the stable against infi-
nitely small perturbations seli-similar regime of super-
sonic collapse by growing quasi-modes is demonstra-
ted via the numerical solution of Koshi problem for
Zakharov equations. The quantitative criterion for the
destruction of self-similar regimes is formulated.
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INTRODUCTION

The hypothesis of globally stable seli-similar regimes existence
for supersonic Langmuir collapse [1] plays a significant role in the
attempts to construct a theory of strong Langmuir turbulence (see,
for example, Ref. 2). Natural wish of researchers to test the hypo-
thesis was partly satisfied in recent years. First, in Rel. 3 the
examples were numerically constructed for seli-similar solutions of
the so-called scalar model equations and one-dimensional equations
assumingly describing the Langmuir collapse of a strongly ilattened
cavern on its short axis. Ldter, the authors of articles [4] succeeded
in numerical finding of the seli-similar regime with a nearly spheri-
cally symmetric cavern for Langmuir collapse (such a regime is
realized at a nearly equal population of a slightly split triplet of the
ground states, corresponding to the unit «orbital momentum» {=1).
Further, the structure was revealed of a whole set of seli-similar
scalar collapse regimes and some of those were found out analyti-
cally [b]. Finally, in Ref. 6 it was produced the most interesting
(from the viewpoint of strong turbulence theory) seli-similar Lang-
muir collapse regime for a cavern with a single populated state.
Simultaneously with the search of seli-similar solutions, the
attempts were made to study a stability problem for those. In Rel. 7
a continuous component of the spectrum was found out for lineari-
zed equations of a scalar model. This permitted the author to obtain
a simple criterion for instability of self-similar solutions against the
modes of continuous spectrum. For the scalar collapse the criterion
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mentioned coincides with the necessary condition for the self-similar
solutions existence. It is worthwhile to note here, that self-similar
solutions considered are related to the supersonic adiabatic limit.
According to Ref. 7, an account of a small «sonic» correction turns
the eigenmodes of continuous spectrum of stability problem for
self-similar collapse into the so-called quasi-modes. The latter can
grow only at a cavern compression by a finite, though a large on
the Mach parameter, factor and, at sufficiently low initial amplitu-
de, they have not enough time to develop.

The possibility of existence for true growing eigenmodes (corres-
ponding to the point spectrum of a stability problem for self-similar
solutions) has been studied for a wide class of self-similar scalar
collapse regimes in Ref. 8. There, in particular, the stability was
proved of the simplest self-similar solution from Ref. 3 against the
infinitely small perturbations. The possibility of destruction for this
and other seli-similar solutions stable agianst the infinitely small
perturbations by growing quasi-modes, at not too smali initial
amplitude of the latter, is of principle importance. This possibility,
called in question by a number of specialists up to now, is worth to
be studied in more detail. |

2. BASIC EQUATIONS

In the scalar model oi Langmuir wave collapse the evolution of
an electric field time envelope ¢ and perturbation of ion concentra-
tion n is described by the following dimensionless equations [1]:

(f%—!—ﬁ—n)wzﬂ, (2.1)
(g;—,z-,:i)n:ﬁhmﬂ. (2.2)

Let t and a be the typical time and spatial scales for the func-
tion n variation, i. e. the deepening time and the size of cavern. At

T€a, (2.3)

when in equation (2.2) the «sonic» term An can be neglected, the

collapse is accepted to call the «supersonics. In the process ol
supersonic collapse the values 1, a, n and W=|y|* are bound by
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the relation following from (2.2):

n

TE

Sl=

P

(2.4)

According to the equation (2.1), the frequency o of the Tunction ¥
oscillations and the values a, n satisfy the estimates

W~a te~n. (2.5)

The second estimate inables one to represent (2.4) in the form

T 2~ W (2.6)
Under the condition -
T'Kw (2.7)

the cavern deepening is slow (adiabatic) and an energy of trapped
Langmuir waves does not change: '

W a® = const (2.8)

(d is a space dimension). Using estimates (2.5), (2.6), one can
rewrite the condition (2.7) in the following form:

Wat< 1 (2.9)

and make sure that its fulfilment is improved in the process of
supersonic adiabatic collapse at d<C3. The applicability condition
for a supersonic approximation (2.3) is equivalent to an inequality

Wa*>1, (2.10)

which becomes stronger in the process of collapse at d=23, remains
the same at d=2 and is weakened at d=1, which ultimately leads
to the cease of one-dimensional collapse. Though, until (2.3) is
satisfied one is free to consider the collapse at any dimension of a
space d<C3. The separation of a rapidly oscillating factor from the
functions 1:

i ;
W7, £) = (7, £) Exp{i ( ar m{r’}} (2.11)

fiy

enables one to represent the equations, describing the supersonic
adiabatic collapse, in the following form

(—o4+A—n)$=0, | (2.12)
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5;5 d'F 1912 =0, (2.13)
&‘2_2 n=A |2 (2.14)

With no loss in generality, the function % (7, t) can be choosed real.
The equations (2.12) — (2.14) allow the self-similar substitution

- Zragn 25

a7l =o(f) u(F\elt) ), BFEH=1"EFye ),

te=t,—1, 4 aftyeoT V4, (2.15)
New functions u(p) and E(p) satisiy the equations
(—14+A—u) E=0, (2.16)
"'-1 2 - "-l 2 T o= =53
(FH1450V ) (prhagavju=at’ e

where v already means the differentiation over the variable p.
The equations (2.12) — (2.14), linearized on the background of
self-similar solution, has the power-type over t solutions:

Sa(f) = w(f) Re (8.17),
dn(F, t) = w(f) Re | ua(p) T°] , : (2.18)
S¢(7, {) =1 'Re| E4p) 1] .

The values of «, Q. and functions u.(p), E«(p) are defined by the
set of equations

(—14+A—u) Ea=(Qu+u,) E, (2.19)
a{ dPEE.=0, (2.20)

4 ok ¥ i Rgann 0 Jd_&
(-d-+1+?pv—a) (F+F;1v—c¢) u.=2MEE.) . (221)

on the class of functions regular at p—0 and decreasing at p—oco.
The perturbations, growing faster than self-similar solution, corres-
pond to the eigenvalues o located in the left semiplane:

Re a <<0. (2.22)

The eigenvalues a=—2/d and a=—1 are generated by a
symmetry of equations (2.12) — (2.14) against the space-time shifts
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(see Ref. 7) and is not connected with the true instability. If one
considers the mentioned above «regularity at p—0» of the functions
4. E. as their finiteness, the spectrum of eigenvalues « should have
the continuous component filling the entire strip (see Ref. 7):

Ld e ioh Ve el 2
~> Rea> —+ [4 1 9F (o}] 2l gt (2.23)
The value o, is negative at

E*0)> % (§+ 1) : (2.24)

That guarantees the existence of unstable quasi-modes. If one consi-
ders the «regularity at p—0» as a stronger condition of all correc-
tions finiteness generated by the sonic term An (omitted during the
passage from (2.2) to (2.14)), the spectrum of eigenvalues a turns
out to be discrete and corresponding eigenmodes, according to
Ref. 7, should be true. The results [8], obtained within the frame of
the scalar collapse model at d=3, enable one to anticipate that the
simplest self-similar solutions with

% (% 4 1) < EY0) < "3_ (%+ 1) (2.25)
are stable against infinitely small perturbations, i. e. that the true
unstable eigenmodes for these solutions are absent. Nevertheless,

the quasi-modes should grow on the background of solutions
satisfying the condition (2.25).

3. QUALITATIVE EXPLANATION OF INSTABILITY

The evolution of a small perturbation 8w, 8a, 8¢ of self-similar
solution- (2.15) is described by the linearized equations
(2.12) — (2.14) :

(—w4A—n) Sp=(8w+6n) ¥, (3.1)

\ dFp S =0, (3.2)
. 0
E‘:“Fan = 2A(P 5%) . (3.3)

The equation,(3.1), solvable for 8 under the condition
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S d”ﬁﬁ? - { ]

-15m=—

enables one to restore 8y by 8n with an accuracy to a proportional
to ¢ item, which is unambiguously defined by the orthogonality con-
dition (3.2). Thus, the set of equations (3.1) —(3.3) is reduced to
the closed equation for 8n. This equation has especially simple form
in the case, when the perturbation 8n is of a small, compared to a,
spatial scale A and is localized in the vicinity of the cavern center.
Under the conditions mentioned, one can neglect in equation (3.1)
(near the cavern center) the terms (w-+4n)8¢ and Sw§ and replace
in equation (3.3) (7, ) by (0, ) =E(0) /v (see (2.15)). The sub-
stitution Adp=8ny in (3.3) results in the equation

jwﬂ— dn ~ EEJFG]

at? T

on . (3.9)

The sonic term An, omitted in (2.14), has no influence on the evolu-
tion of small-scale perturbation 6n under the condition

AT, (3.6)
The integration of (3.5) yields:
o (3.7)
n (0, t)

with the value oo given in (2.23). As seen from (3.7), at ap<<0 the
growth of small-scale perturbation of an arbitrary form proceeds
faster than the cavern deepening, which is agreed with the conclusi-
ons given in Ref.7 on the existence of unstable quasi-modes. The dee-
per relation between the considerations used here and in Ref. 7 can
be traced by expanding the small-scale perturbation &n(7, {) over
quasi-modes having the fixed values of Re a=a¢+0 and all possib-
le values of Ima. The instability described by the formula (3.7) is
developing unless and until the size of cavern a noticeably exceeds
the wave length of perturbation A. For this time, the ratio dn/n
grows by a factor

eigd /2

A

and reaches the value of

é—_—_i

—aopd /2

Frhl5s 63

At l}:ﬁnflg»-—e(ﬁ—})r the PRIt aitiatioh Bl weakly distarti e ehave

function» ¢ and that justifies the using of the linear theory of insta-
bility. In the opposite case:
—aod /2

(5)=() 9)

the growing small-scale perturbation distorts noticeably the field
and the self-similar collapse regime is distroyed.

The amplification of a relative perturbation 8a/n during the
given cavern compression is determined by the factor § = — aod/2.
The values of § for calculated in Ref. 3 self-similar solutions (2.16),
(2.17) with d=1, 2, 3 and E?(0) from the range (2.25) are given
below:

1 2 3

EX0) 17.88 4.277 1913

—a 150 0467 0.185 (3.10)
8 0.75 0467 0.276

The maximum value of 8§ is achieved at d=1, which makes the
one-dimensional model the most suitable for numerical studies of
small-scale instability.

4. ONE-DIMENSIONAL MODEL

Prior to numerical calculations, one should be sure in the stabi-
lity of one-dimensional self-similar solution with E*(0)=17.88 aga-
inst infinitely small perturbations. At d=1 the true eigenmodes are
analytical in the center of cavern (x=0) and decreasing at
x— 4 oo solutions of equations (2.19) — {2.21). Since the considered
self-similar solution is even, the eigenmodes are also of a delinite
parity. For the odd modes the condition (2.20) is satisfied automati-
cally, the value of 2, in (2.19) is equal to zero and E,(0)=0. The
normalized by condition



dE,
dx

=] (4.1)

Jr=ﬂ_

analytical at x—0 odd solution of equations (2.19), (2.21) depends
on the sole complex parameter «. The limit

I _(a) =lime TEE (%) (4.2)
is analytic function of . The spectrum of true eigenvalues a, cor-
responding to odd eigenmodes, is determined by the following equa-
tion:

I_(a)=0. (4.3)
The number Z_ of growing odd modes, being equal to the number

of zeros of the function /_ (&) in the left semiplane, can be found
by the formulae

2.=P. L] . (4.4)
1 d

J = == = = t
= 5 do——In/_(a), (4.5)

where T' is a contour passing the whole imaginary axis a in the up
direction and closed by an infinite left semicircle, P_ is the number
of the function’s /_(a) poles in the left semiplane. At
|loe| =00 (Re a<<0) the function /_({a) tendsz to the finite limit,
therefore the integral along an infinite semicircle in the expression
for J_ is equal to zero. Using the property that /_(a")=/_(a)",
the integral along the imaginary axis « can be represented in the
following form

L:% E dﬁdiﬂargf_{iﬁj‘ (4.6)

The poles of function /_(a) are those values of a at which the
equation (2.19), (2.21) (with d=1) have a nontrivial odd solution,
analytical at x—>0 and satisfying the condition

dE ,(x)

dx

=0. (4.7)

IZ[]

A simple analysis shows that such a solution exists only at
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(6+2p—a) (4+2p—a) =2E%0),

where p=1, 3, b, ... is an odd positive integer, i. e. at

3 l 1 - L
-:\:Emp_EQp—f—tl—f-Ej:[T—!u?E(ﬁ)] : (4.8)

For the self-similar solution under consideration an inequality is
satisfied £*(0) <<21, which provides that all numbers czf with p= 1
are positive, i. e. the function /_(a) has no poles in the left semi-
plane o« and P_=0. The numerical calculation yields /_ =1. Hence,
Z_=1. The only eigenvalue a, corresponding to an odd growing
mode, is equal to —2. This mode is generated by a shift of the
place, where the singularity is formed, and has no relation to the -
true instability.

The analytical in the centre of the cavern even solution of equa-
tions (2.19), (2.21) linearly depends on two parameters, at every
value of a. The decrease condition for E,(x) at x— oo determines
unambiguously the ratio of these parameters and, after introducing
the normalization

d°E,

dx?

_@E

vl iR

(4.9)

¥
x={)

determines also the function E,(x). As well as E,(x) the integral

(o) = T dx E(x) Eofx) (4.10)

— 00

from (2.20) depends analytically on a. The nonzeroth eigenvalues
of a, corresponding to even modes, are the roots of the equation

I(a) =0. (4.11)

At |a|—+o00 (Rea<<0) the function /(a«) tends to the finite limit:

Efx)—E(x), Ko)—> Bf dx EX(x) .

= o0

Therefore, the numbers of zeros Z; and poles P of the function
/(a), located in the left semiplane, are bound by the following rela-
tion :
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Zy=P+ | d[:s;—ﬁ arg 1(ip) . (4.12)
]

For counting the number P it worth mentioning that at every pole
meaning of a the equation (2.19), (2.21) have nontrivial even solu-
tion, analytical in the center of cavern, decreasing at x—oo and
satisfying the condition

d*E,
d,‘&’? x={

= (4.13)

At any value of « the analytical in the center of cavern even solu-
tion of equations (2.19), (2.21), having the property (4.13), is
determined with accuracy to multiplication by an arbitrary constant.
Normalizing such a solution by the condition

EL0)=1, (4.14)

one can introduce an analytical function
I (@)= lim e~ *E.(x) . (4.15)

Its zeros are located in the poles of function /(a), which enables
one to count the number of the latter in the leit semiplane of a by
the formula

P=P++T~]? Sdﬁfgarghﬁm- (4.16)
0

In the poles of function 74 (=), the number of which in the left
semiplane is denoted here by P, the equations (2.19), (2.21) have
nontrivial analytical in the center of cavern even solution, satisfying
the conditions

d!
E.(0) =0, EEm(x)t:ﬂ:[}. (4.17)

Such a solution exists only at a=a, , where a, is given by the
formula (4.8) with even, positive p: p=2, 4, 6,.... For the seli-simi-
lar solution under consideration, all numbers o, are located in the
right semiplane «, hence, P4 =0. The calculation of Z4 by the fol-
lowing from (4.12), (4.16) formula

12

Zy =P+ | dB s arg [ 1GB) 11GB)] (4.18)

b4
0

yields Z,=1. The sole growing even mode corresponding to the
eigenvalue o= —1 is related to the shiit of the singularity genera-
tion moment, but not to the true instability.

Thus, the considered seli-similar solution is stable against infini-
tely small perturbations and can be used for the study of quasi-
modes’ instability.

5. SMALL-SCALE INSTABILITY

In order to check the conclusion of an increase in small- scale
perturbations and the condition (3.9) for the destruction of sell-si-
milar supersonic collapse by them, the Koshi problem for one-di-
mensional equations (2.12) — (2.14) was solved numerically. The
initial conditions differed from the seli-similar solution (2.15) by a
small adding, which rapidly oscillates along x (see Fig. 1):

n(x, 0) = wo| u(xwi’®) +du(x,0)] ,

dnlx, 1) __ 0 1/2
o |:=r:r_ 3 [4u{xmn )+ (5.1)

+.2x£% u(.'-:mﬁﬂ} + (4 —a) dulx, [}}] 3

Su(x,0)=b Co8 (A% i) ;

1 4+ x*wf

The real field ¢(x, {) was unambiguously restored by n(x, t) via
the equation (2.12) and the normalizing condition

[ dedr,)=—— [ dEE%E). (5.2)
A To/ 0o oy
The values of parameters ao=2zwg '/°, 1o satisfied the conditions
(2.3), (2.7) for the supersonic adiabatic collapse:
@=2-10"3% 1o=10""% (5.3)

The wavelength A=2n/k was chosen in the range ao>A>>1 in
13
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order to make perturbation small-scaled, but practically uninfluen-
ced by the sonic term An omitted in (2.14):

X85 05, (5.4)

The condition (3.9) for the destruction of seli-similar collapse regi-
me at the given values of parameters is equivalent to the inequality

b>0.1. (5.5)

The development of perturbation 8n(x, {) = (f)du(x, ) in the pro-
cess of the cavern compression and deepening is presented in Figs 2
and 3. Fig. 2 corresponds to the small initial amplitude of perturba-
tion: #=0.03. In this case the collapse remains to be close to the
self-similar one up to the cavern size a~A (at which the perturba-
tion ceases to be small-scaled) and, consequently, further. In the
case presented in Fig. 3 (h=0.3) the small-scale perturbation has
enough time to destruct completely the seli-similar collapse regime.

As it is seen from the given figures, the small-scale perturbation
grows without shifting in space and does not change its spatial
scale. In the frame of coordinates compressed together with the
cavern such a perturbation is stretched with time and moves out
from the center of cavern. At a sufficiently small initial amplitude it
goes outside the cavern without a noticeable influence on the collap-
se process. Thus, the small scale instability is of a convective cha-
racter. In contrast to this, the instability of true eigenmodes (if tho-
se exist) is absolute. The development of an absolute instability of
one-dimensional seli-similar solution (2.15) with £*(0) =51.45 (also
found in Ref. 3) is fiven in Fig. 4. As it is seen from the figure, the
true eigenmode is compressed together with the cavern. This provi-
des the possibility of an infinite growth of perturbation amplitude
and, independently on the initial conditions, results in the destructi-
on of the self-similar collapse regime.

6. ON THE TRANSITION OF SMALL-SCALE SONIC PERTURBATIONS
INTO MODULATIONALLY UNSTABLE ONE

Only such a small-scale perturbations were considered above,
for which the sonic term An, omitted in (2.14), is not essential. A

shorter- wavelength perturbations, satisfying the condition opposite
to (3.6):
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Fig. 2. Collapse dynamics at 4=0.03:
1=1g(wg/m)'", line I represents initial state; line 2—state with w=20wy; line
3—(_&)%"‘1[}[}&\;}_

Fig. 3. Collapse dynamics at b=10.3:
’ I — w=uwy; 7 — mﬁ?ﬂmr_}: 3 — {ﬂﬁil-ﬁﬂlﬂﬂ
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Fig. 4. Destruction of seli-similar solution with E*(0) ~51.45 by unstablest eigen-

mode and transition to seli-similar regime with E*(0) = 17.88:
 —w=my 2 — 02=21Twy, 3 — o= 5.58w0,.
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A& 1o, (6.1)

are also of interest. For their description, instead of (2.14), one
should use the basic equation (2.2). The corresponding correction to
equation (3.5), describing the evolution of weak small-scale pertur-
bation into the vicinity of the cavern center, has the form

sy opENG)
at* T

sn. (6.2)

At t>) the second item in the right-hand side of (6.2) is small
and perturbations behave as usual sonic waves. Since the amplitude
of a plane sonic wave is time-independent and the cavern is deepen-
ing proportionally to a—? the perturbation relative value 6n/n de-
creases as a2 This continues until the moment ©,~A when the
small-scale perturbation (it is assumed that A<ai1=a(11)) becomes
modulationally unstable in the vicinity of the cavern center. At T<A
the instability is developing in the regime (3.7). By the moment 7;
when the cavern size is decreased down to aj~A, the ratio 6n/n is

&n 8n e T

ARG &) - e
The applicability condition for the linear theory of instability
6nit< 1 at a~h coincides with the inequality (8n/n);<1. In the

opposite case:
—u..:,dl,."'.l 'h"{lr—ﬂ-u

2 —

(S e tg) - 6 64
the small-scale instability destructs the self-similar collapse regime.
At d=1 and initial perturbation (5.1) with

ao=2-10"3%, . d=8-10"%  1¢=9.3.10"° (6.5)
the condition (6.4) is reduced to the inequality
b=0.3. (6.6)

The evolution of such a perturbation at b=~3 is shown in Fig. 5.
According to the estimate (6.6), the seli-similar regime of collapse
is destroyed.
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Fig. 5. Transition from sonic perturbation to modulationally unstable one and des-
truction of self-similar collapse regime:
1 — o == kg 2 — UJHEU'{L'!U; b UJ’--"’..»‘i-ﬂBhln.
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7. CONCLUSION

The numerical calculations performed demonstrate the possibility
to destruct the stable against infinitely small perturbations self-si-
milar regimes of supersonic collapse by short-scale perturbations of
finite amplitude. This possibility should be taken into account in the
description of strong Langmuir turbulence of a nonisothermal plas-
ma (with higher electron temperature), where the level of a
short-wave sound is quite high. The collapse dynamics in the pre-
sence of sufficiently high-intensive sound is not universal. As the
compression grew of captured Langmuir waves, the more and more
short-scale perturbations becoming modulationally unstable in the
cavern center, the new and new narrow gaps of ion concentration
deepening and sucking the bound state populated by Langmuir
waves. In this case, the characteristic size of collapsing bunch of
Langmuir waves decreases [aster than that according to the law
aocot?/® available in the absence of small-scale perturbations. The
collapse new law is of statistical character and it depends on the
sonic turbulence spectrum (see Ref. 9).

REFERENCES

. Zakharov V.E., Zh. Eksp. Teor. Fiz., 62 (1972) 1745; Sov. Phys. JETP, 35
(1972) 908.

2. Galeev A.A., Sagdeev R.Z., Shapiro V.D., Sheuchenko V.. Zh. Eksp. Teor. Fiz.,
73 (1977) 1352; Sov. Phys. JETP, 46 (1977) 711.

9 Zakharov V.E., Schur L.N. Zh. Eksp. Teor. Fiz., 81 (1981) 2019; Sov. Phys.
JETP, 54 (1981) 1064.

4. Malkin V.M., Tsiduiko Yu. A. Fiz. Plazmy, 11 (1985} 964; Sov. J. Plasma Phys.,
11 (1985) 5H61.

5. Malkin V.M., Khudik V.N. Zh. Eksp. Teor. Fiz., 92 (1987) 2076; Sov. Phys.
JETP, 65 (1987) 1170.

6. Malkin V.M., Khudik V.N. Seli-Similar Langmuir Collapse. Preprint 88-165,
Institute of Nuclear Physics, Novosibirsk, USSR, 1988.

7. Malkin V.M. Zh. Eksp. Teor. Fiz., 87 (1984) 433; Sov. Phys. JETP, 60 (1984}
248.

8. Maikin V.M., Khudik V.N. The Point Spectrum in the Stability Problem for
Seli-Similar Scalar Collapse. Preprint 1988-128, Institute of Nuclear Physics,
Novosibirsk, USSR, 1988; Zh. Eksp. Teor. Fiz., 95 (1989) 1639.

9. Malkin V.M. On the Role of Sound in Strong Langmuir Turbulence. Report in
All-Union Conference on Plasma Physics, Zvenigorod, 1988.

21



V.M. Malkin, V.N. Khudik

Growing Quasi-Modes in
Dynamics of Supersonic Collapse

B.M. Maakun, B.H. Xydux

Pacrymue kBasuMonbl
B IHHAMHKEe CBEpPX3BYKOBOTO KoJJjanca

Orercreennblii 3a Buinyek C.I.TTonos

Pa6ora noctynuaa | mapra 1989 r.
[Mognucano B newatsb 23.03. 1989 r. MH 10107
dopmar Gymarud 6090 1/16 Ob6wem 1,6 meu.n., 1,3 yu.-uag.a.
Tupax 250 ska. Becnaiatho. 3akaz Ne 32

flabpano 6 asromarusuposanxoid cucremz wa OGaze ¢goro
naboprozo astomara PAIO00 u IBM «Iaexkrponuras u
ornewarane Ha poranpunre Hucruryra adeprod gusauxu
CO AH CCCP,

Hogocubupek, 630090, np. akademuxa JTaspenrvesa, 11.



