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ABSTRACT

Correlation functions of wvector and axial currents
(with flavor content wd and wus) are calculated in the
zinstanton liquid» model. Results are compared with
the data on eTe~—hadrons (/=1) and t—v,+had-
rons, respectively. Very good agreement is found,
especially in the vector case, in which the theory does
reproduce a «fine tuning» of p(770), p(1450), p{1700)
and the nonresonance contributions existing in data.
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1. PHENOMENOLOGY OF THE CORRELATION FUNCTIONS
OF VECTOR AND AXIAL CURRENTS

After the theory of the «instanton liquid»> was developed so that
straightforward numerical simulations became possible Cl, we have
first applied these data to the «exceptional» cases of the hadronic
spectroscopy, the famous pseudoscalars like the pion and v mesons
in C2. (Here and below Cl, C2 etc. refer to subsequent papers of
this series [1].) The reason for doing so was the long-standing sus-
picion that just instantons make these particles so exceptional. As a
step toward «more regular» channels, we have considered in C3
some hydrogen-atom-like hadrons, the mesons made of a heavy
quark and a light antiquark. They are simpler from the theoretical
side, but, unfortunately, the experimental information in this case
remains so far very limited.

In the present paper we come to the correlation functions of vec-
tor and axial currents. Although theoretically this case is much
more complicated (strong cancellations of various effects appear,
which makes predictions difficult, see below), in principle it is very
good test for the theory. Indeed, such currents (in contrast to many
others invented by theorists) really exist in nature as (a part of)
electromagnetic and weak currents. The spectral density of the cor-
responding correlation functions is directly measurable, and using
dispersion relations one may obtain complete correlation functions.
In this way we get much more detailed information on the correla-
tion functions and can test our ideas about the QCD vacuum struc-
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ture much better. (By the way, such excellent tests were not
actually used for lattice calculations yet.)

In this paper we focus only for the flavor nonsinglet currents
(of the ul'd and ul's types, where I' stands for some gamma matri-
ces). This case is simpler in calculations: there is no the «two-loop»
diagrams (in which the quark emitted by the current is absorbed
back by it) but only the one-loop diagram (quarks travel from one
current to another) contribute. Of course, additional and very
interesting experimental information is available for the /=0 vector
channels (o and ¢ ones) as well , and it can also be used for fur-
ther tests of the theory. Wa are planning to do this in our subsequ-
ent publications.

Now let us consider the «p-meson» and «A;-meson» currents
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In ete -annihilation experiments one deals, of course, with p"

while we work with the p* case. Obviously, all their properties are
the same, apart of small isospin-breaking effects, which are ignored

anyway. (Note also, that for consitency our p" current is by 2

larger than that in [3].)
The spectral demlty of its mrre]atmn function is related to the
cross section of ete™ -annihilation into hadrons (/=1) as follows
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R;_,(s)=oc(eTe —hadrons, [=1)/o(eTe " —u"n7). (2)

The previous analysis of these data [2] was made using the
so-called «Borel-transformed» representation suggested by Shiiman,
Vainshtein and Zakharov [3]. We do it directly in (Euclidean)
space-time representation (as it was first suggested in Rei. [4])
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Here D(m, x) is just the propagator of a scalar particle with mass
m to distance x, so the physical meaning of it 15 more or less
self-evident. The distance x is below the space-like, x*= —1°, where
t is «Euclidean time» (and D(m, x) is exp (—mt) at large 1).

Experimental selection of the /=1 channel is made via selection
of even number of the pions in the final state. The data quality on
the low energy e%e -annihilation have been essentially improved
during the last decade, passed since the SVZ original work.
Roughly speaking, there are three different component in this spec-
tral density: (i) the prominent rho-meson resonance; (ii) compli-
cated mixture of (at least) two «primed» resonances, p(l1490)
and p(1700), seen mainly in the 4 pion channel as a wide bump;
(iii) the nonresonance «continuum» above 2 GeV, where R(E)
roughly follow the parton model prediction R=3/2. An approximate
expression for R(E) is as [ollows
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A=65: I'=160MeV; A'=25; ["=300 MeV,
Ey==2:GieVe mi=106 GeV: (4)

The correlators considered are strongly decreasing function of x.
At small x they are governed by the asymptotic freedom, for mas-
sless quarks they are (by dimensional reasons) Il (x)~x"° At
large x II(x) the decreases exponentialy. Therefore, it is inconveni-
ent to plot the correlators themselves, and we systematically use
below the ratios R(x)=Tl,(x)/II"(x), where HLi (x) =6/n'x® corres-
ponds to the free quark propagation. At small x such ratios should
tend to umty due to the «asymptotic freedoms.

In Fig. 1 we show R,(x) dependence calculated from the
ete~-data. The contributions of all three components of the spectral
density mentioned above are shown separately.

The striking observation (as far as I know, never noticed befo-
re) is that in this case there exists some «fine tuning» of all contri-
butions, so that resulting R, (x) keeps constant (close to 1.1) up to
very large distances of the order of 1.5 fm! Nothing like this is seen
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in other channels. For example, for pseudoscalar and scalar cur-
rents (see C2) such ratio strongly deviates from unity at much
smaller x~0.2=0.3 fm.

Due to these features the /=1 vector correlator is unique. Theo-
retically it means, that here there are strong cancellation of all cor-
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Fig.1. The ratio Ry{x)=Tl,(x) /T, (of the correlator to its «asymptotically free»

version) versus the distance x (in fermi). Three parts of the spectral density discus-

sed in the text are shown separately by the dashed lines, as well as their sum (solid

line). One may see that this ratio remains approximately constant in the whole x
region considered.

rections, leading to «much more freedom» for the quark —antiquark
propagation in this channel.

Now we come to the axial current ;'f:ﬁvws.d. All general for-
mulae written above for the vector correlator are valid for it too.
The corresponding data are now available from the v lepton decay
into odd number of pions. (Even number of pions corresponds to
the vector part of the weak current, the corresponding data are con-
sistent with what was said above, but they are still less accurate
than the ete~-data.) Decay into v, plus one pion does not provide
new information: the corresponding coupling constant [ is well
known from the m—-pv, decay. In this paper we are not going to
consider the pion properties (considered in different but related con-
text in C2) but the A, meson. It is easy to get rid of the pion signal
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in the correlation function: simple convolution of indexes p, v leads
to

62D(m=0,x)= a9} (It—?)z—ﬁ{x}. (5)

n'x

Thus, in the chiral limit the pion signal is delta-function like and at
finite x (to be considered) it is absent.

There are two channels with three pions, (" n"a™) and
(n’n’n~), they have branching ratios (6.8+.6)% and (7.5+0.9)%,
respectively. (All numbers are from 1988 Particle Data). So, inside
uncertainties they are equal. Invariant mass' distribution is strongly
peaked around 1.2 GeV (see review [5]). Both facts suggest domi-
nance of the A, resonance.

Let us introduce the coupling constants f,, f, for p and A,
mesons

(0| dyit |p) =[onigey
(O dyayst | ALY =f mqe,, (6)
where ¢, stands for the polarization vector of a meson. (Note: what
we call f, is f,/m, in [5], but our notations are more standard,
similar to [, definition etc.)

From ete -data one get f,~200MeV. From the experimental
ratio

rit—v. A

_ ) ~0.5940.10 (7)
r{T—v: p)
and its theoretical expression
r{t—v: A1) bi. fa 2(1—mif'm?’j:’“—|—2m_§;’m?] (8)
r{T—v.p) (f,,) (I —mi/m (1 +2mi/m?)
one finds that
fE L] 4 15, (9)

Resulting A, contribution to the correlator is shown in Fig. 2. Com-
paring it with the p meson one given in fig. 1, one may see that the
A, contribution is larger at small x (because it is proportional to
fim;, and m,> m,), but it drops rapidly already at x> 0.6 fm.
(Unfortunately, our conclusion (9) is not as solid as it may
appear, and further analysis is needed here. The data for v decay
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show essentially wider A, [5], with I';> 400 MeV, while in hadronic
relations I', ~300 MeV. There certainly is some admixture here, and
therefore we actually consider some «effective A,» resonance, inclu-
ding this admixture. The A; curve in Fig. 2 should also be unders-
tood in this sense.)

Production of hadronic states heavier than A, in v decays is sup-
pressed, for its mass m.=1784 MeV and a cutoff is too close. No
strong 3-pion production above A; is seen, and the 5-pion branching

Ra
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ng. 2. The same as in Fig. 1, but for the axial current.

is small, of the order of 0.1%. We do know theoretically, that at
large energies hadronic production from the axial and vector cur-
rents should become equal, so we approximate such nonresonance
«continuumy contribution by the standard one-parameter expression

R,(s) =8(s — E}) % (14 ouy(s) /70) - (10)

We do not know Eg value and can only claim that it is not smaller
than m, . Taking it as a lower bound, we get the curve for the total
axial correlator function shown in Fig. 2. One more curve, with
Eo=1.6GeV (the threshold of the «invisible region» in v decay) is
shown for comparison, demonstrating existing uncertainty in our
knowledge of this correlator.
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We also consider strange (ul's) channels in this paper. This is
mainly done because it is simple change of our formulae. Phenome-
nologically in these cases we know only masses of the resonances.
In vector case we have K (892) (to be compared to p(770)), and
two excitations, at 1415 and 1715 MeV, also having their nonstrange
partners with close masses. Thus, there are reasons to assume that
both correlators are similar. In the axial case there are two mixed
states K,(1270) and K,(1400) (to be compared to A(1260) and
B(1235)). Roughly speaking, their mean is also shifted up by about
the strange quark mass m. But the pseudoscalar and scalar cases
are different: here we have K(492) (to be compared to n(138)) and
Ko(1430) (to be compared to A¢(980)). We have already discussed
in C2 why the n— K mass difference is so large. As for the scalar
resonances, probably both particles mentioned do not significantly
contribute to the correlation functions considered (see below), so we
cannot say anything on the origin of their large mass difference.

2. THE PREVIOUS OPE-BASED ANALYSIS OF THE CORRELATORS

Analysis of /=1 vector and axial currents was historically the
groundstone of the QCD sum rules approach [3], based on Wilson
operator product expansion (OPE). Its application has produced
very impressive results [3] including «predictions» of masses and
coupling constants for p, m and A; mesons. Now, after a decade of
experimental work {briefly summarized above) and in view of new
theoretical development (to be discussed below), it is necessary to
comment on the present status of this approach and its correspon-
dence to what follows.

Presenting the OPE analysis we deviate from the fundamental
SVZ paper in one point: instead of their «Borel transform» repre-
sentation we use the space-time one. Let us remind the reader why
they have used it. The reason was twofold: it both suppresses con-
tribution of larger dimension operators compared to momentum rep-
resentation, and also il better suppresses the contribution of heavy
nonresonance states. It was a clever trick, aiming to increase the
«windows in which one tries to match the small-distance OPE with
the large-distance hadronic asymptotics.

Of course, we use the space-time representation because we cal-
culate the correlators numerically, we have no choice. But even if
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- we have, our aim is now quite different. We want to test our model
of the QCD wvacuum, predicting certain deviations from the asy-
mptotic freedom. Thus, there is no reason to suppress these devia-
fions (the objest of investigation) by any tricks. We are also sure,
that physical transparency of the space-time representation is now
more important that some (if any) increase of the «windows» for
conironting theory with experiment.

After this preamble, let us present the OPE formulae [3] under
consideration. We omit the mynp operators and the lengthy expres-
sions for higher dimension operators (see Rels [6]) because they
are not actually used in applications. In Euclidean time (t=+/x%
our ratios R, ,(t) are predicted to be

a2 &)
By Lo os(T) @[gﬁsivll ™ (0, 1% In (L) E I (11)
T 3.2 16 T

(here p is the normalization point).
The complicated operators O, , are different for vector and axial
channels:

Op=— Egilﬁf’fu‘fﬁf“u. —E‘g’_ﬁﬂﬂﬂ”? - %[ﬁ]ﬁ.f"u .{_wa”d} Z C?'t’.ufﬂ‘?) ;
: s
0, =0y —2nadi; vt —d; yai®d; ) {EE?,.E"‘MR — Eﬁﬂh,f“dgj : E12)
Tad P iy
(Op) = — T2 (fdtnos (O0p) 2 + 20 () o

Estimates of their vacuum average values are given according
to the so-called «vacuum dominance» hypothesis, suggested by SVZ
[3]. (Its validity we are not going to discuss here.) The resulting
curves are shown in Fig. 3, where we have also used other «stan-
dard» SVZ numbers such as

A7) =100 MeV,
as | (PP ) | =(250 MeV)?, (13)
(g G2)?Y =0.5 GeV*,

Comparing these (solid) curves with those obtained from experi-
ment (the dotted ones) one can see, that their behaviour is indeed
reproduced correctly, up to distances of about 1/2 im. (Small dis-
placement of the curves is only few percent effect, which is just
about the size of experimental uncertainties.)
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Fig. 3. R according to the operator product expansion [3] (solid lines). The dashed

lines show correction due to radiative correction (as), as well as its combination

with the «gluonic condensate» (oes 4 G%). Two dotted lines are «experimental» ones,
shown in Figs 1 and 2.

Assuming (but not predicting!) certain shape of the curve (reso-
nance plus continuum), it was shown in [3] that, for example,
parameters of p meson can be obtained from the fit in this region.
(Such wonderful reconstruction of the whole curve from its small
known part reminds me a reconstruction of the dinosaurus by using
only one bone, done by experienced paleontologists.)

It should be noted that many other applications of such OPE-
based calculations have produced very good results. As the most
nontrivial example of such predictions let me mention determination
of the so called «wave functions» for various mesons and baryons,
which nicely correspond to what we know from exclusive reactions
(see review [11]). By the way, let me mention two particular pre-
dictions to be mentioned below: the coupling constants for A meson
f./fo=0.9 and for the strange vector resonance K f./f,=1.05,
which we will mention below.

But keeping all this in mind, one still has to ask whether the
OPE-based analysis is really justified? After all, it is but small dis-
tance expansion. Should one trust it at distances of the order of
1/2 im?
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We will discuss this issue below, and now let us make only one
comment on the «common sence» level. There exist the following
argument: «as soon as the corrections are small, one may probably
use only the first OPE terms». But let us look at the vector channel
at this angle: here corrections are small up to very large distances,
T~1.6 Tm. Whatever is the reason for it (it may be an occasional
cancellation), OPE obviously has nothing to do with this fact.

3. THEORETICAL INPUT AND APPROXIMATIONS USED

Different chiral components of the quark propagator contribute
differently to, say, vector and pseudoscalar correlators. As it was
discussed in details in C2 , in the latter case it is possible that two
quarks and two" antiquarks produced by our currents may directly
jump into the «bound states» (ZM) of the same pseudoparticle. For
vector and axial cases such situation is not possible: either we have
to use zero modes of one istanton and one anti-instanton, or we
have to consider interference of zero and nonzero modes (proportio-
nal to the quark mass, see below). Therefore, there exist a general
reason explaining why the instanton-induced effects are not so
strong in vector and axial channels as they are in pseudoscalar and
scalar ones. |

Our next general comment is related with the validity region of
the OPE. Our calculations are based on the theory of instantons,
which develops its own scales of length. The smallest one is the
typical instanton size po~1/3im. As soon as x is comparable to it,
one cannot ireat x as a small parameter, so our theory suggests
that the OPE should not be trusted for x=1/31im. I so, it is practi-
cally useless, because here all effects are too small to be visible.

It was demonstrated in C2 that such situation really takes place
for pseudoscalar and scalar correlators: the OPE predictions for
x> 1/3 im neither agree with the data, nor with the instanton theo-
ry. But, as we have just demonstrated, for vector and axial cases
OPE works well. However, as we are going to show shortly, our
instanton-based theory also reproduces these data, even in much
wider range of distances. Thus, we are inclined to the opinion that
successful applications of OPE in the vector and axial cases is more
or less ocasional and has no real theoretical justification.

The difference between our formulae and OPE is far greater
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than just the fact that we do not expand in powers of x. There is
essential difference in physics. In particular, we do not include in
our analysis any radiative corrections (processes with gluonic
exchange), while two out of three dominant OPE corrections (11)
are of this nature. Another significant difference is the following:
this form of the OPE deals only with terms singular at x—0, while
the most interesting part ol our work —effects conner‘ted with zero
modes — are nonsingular.

After these general remarcs we come to more technical points.
As this paper is a continuation of a sequence of works, we do not
actually need an extended introduction. Let us only briefly recapitu-
late the main formulae and approximations, on which our results
are based.

The basis of the calculation is a set of the «instanton liquid»
configurations generated as explained in Cl. The light quark propa-
gator S(x, y) is evaluated under approximations discussed in C3. In
short, it is the sum of three parts: (1) the zero mode contribution
(ZM); (2) the nonzero (NZM) contribution for massless quarks;
{3) the term proportional to the quark mass.

The zero modes are «collectivized», so we perform explicit dia-
gonalization of the Dirac operator in the corresponding subspace
and then use the general relation

ZM 3% sl
S™Mix, y) =Z Mﬂi‘.ﬂ (14)
: ik 4+ m

The second component is evaluated as follows: it is assumed
that one of all pseudoparticles gives the dominant correction to the
free quark propagator. When this pseudoparticle is found for a
given configuration and given x, y points, this correction is calclua-
ted by the single instanton formulae due to Brown et al. [7]. (See
details in the preceeding work C3.) By definition, the dominant pse-

udeaer’[\jlcle is the one which gives the maximal deviation of
Tr[S ™™ (x—y)uyu] from its free value. We have checked, that when

such corrections are significant, the «dominant» one indeed

essentially exceed all the others in most cases. Certainly it is
desirable to improve our calculations at this point, but at the
moment it is the best we can do.

The third component, a term proportional to the quark mass,
was not previously considered. Naively in the chiral limit (m—0) it
can be omitted, but one should be careful here. It was shown by
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Andrei and Gross [8] (who have considered the vector correlator in
the one-instanton background field) that the ZM term (which is
O(1/m) in this case) can be multiplied by such O(m) correction in
another propagator, leading to finite (and numerically important)
correction. In the multipseudoparticle background the denominator
in (14) ZM part is 1/ (iA+m), but the limit m—0 is not smooth
because there are arbitrarily small eigenvalues A of the Dirac ope-
rator. (That is why the chiral symmetry is spontaneously broken.)
[t prevents us from naive omission of the O(m) terms.
The general expression for this term can be written as follows

S"x, y) :mS dta et e ) SN

sNPM(x, y) =D A(x, ¥) =— (1475) + AKX, y) Dy — (1—7s) , (15)

41
2
where S"*" is the NZ mode propagator, D, is the covariant deriva-
tive and A(x, y) is the propagator of a scalar particle in the instan-
ton field. Such nonlocal expression is inconvenient to use in prac-
tice. Note however, that for one quark chirality it can be written in
the local form due to the following identity

Mx2) L (149 (D) e, g) =

= —A(x,2) — (14+7vs) DAz, y) =Alx, 2) 8(z—y) (%) (147ys). (16)

€I
2

One can check that for one-pseudoparticle backround only this
chiral component contributes to the correlators of vectors and axials
[2]. For the collectivized zero modes another chirality part contri-
butes too. We also take it in the form (16), so that our total O(m)
correction looks like

(m) ris e il [1+p%07x) (029) /<"y’]
il e dn’(x—u)? (14025 2 (14 p%/f)' L
(+ for the instanton, & for antiinstanton, x and y are here coun-
ted from the pseudoparticle center.) Physically this approximation
means that (in this correction) we ignore the interaction of the
spin-induced quark gluomagnetic moment with the field (ouwou
terms).

A number of approximations just discussed significantly simplify
the problem and makes it treatable, but we have to pay for them
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high price: some general relations do not stricly hold. In particular,
electromagnetic current conservation demands that

By 1o () = 8, 1,0 (%) = 0. (18)

Using the general expression for the propagator in terms of the
eigenfunction of the Dirac operator

S(x, y) :Z M . Dy=hy L9

one may easily prove (18), providing the set of Wy, is complete;

Y Pa(x) Pify) =8(x —y). Indeed:

Oull=TrY" ((3) 3% () Wi10) vobrly) Wit () =

A A

A

=Y Tr[( 5 — 77) 0 W) vewtv)| =0. (20)
RS

We use (19) for the incomplete set of states (that of zero modes),
while the NZ ones are treated differently. As a result, electromag-
netic current is not exactly conserved. Whether this defect of our
approximations is numerically large or small we plan to consider in
subsequent more detailed publications. It should be small if the «in-
stanton liquids» is sufficiently dilute.

4. OUR RESULTS

As we discuss in this work only the flavor-nonsinglet cases, we

may consider only the «one-loop» diagram for the correlation
function

M%) = (Tr[[uS(x,0) [.S(0, %)) y 5 Ti=vy,: T} =vuys, (21)

which is evaluated by averaging over points x, y (see C2 for
details) with the propagator S(x, y) =S"*™M 4+ S 4+ 8™ discussed
above. Typically our measurements are based on about 1000 pairs
of points at any |x—y| for each of 10 recorded configurations. It is
natural to use all types of gamma matrices I' simulteneously, and,
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as a test, we have checked that for pseudoscalars the results agree
with those obtained in C2, where somewhat different account for the
NZ mode part was made.

It is instructive to start with the results of the incomplete calcu-
lation, in which instead of S only the NZM part S™" is used. The
corresponding curves are shown in Fig. 4. Thus, il only quark scat-
tering on the color field is taken into account, the correlation func-
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Fig. 4. The dashed curves represent our measurements for the scalar (S), the pseu-

doscalar (PS), the vector (V) and and the axial (A) correlators if only nonzero

modes are taken into account. (There are only two curves because they are degene-

rate in this approximation.) The dotted curve {shown for comparison) corresponds to
free propagation of quarks with the mass 1.5A,, (about 330 MeV).

tion drops faster than for the free quarks. Roughly speaking, it looks
similar for all channels, and its behaviour can be understood in
terms of quark effective mass (see the dotted line in Fig. 4, shown
for comparison).

The results of a complete calclualtion display drastically diife-
rent behaviour for different channels, see Fig. 5. Six dashed curves
in Fig. 5 are the «delta plus theta functions» fits

.4 ) 9 .
]I:ILH {I;I =3,F1-f1,-1 fﬂp‘l‘q Dli.l"ﬂ V.A> XJ —I—

4 % { dEE*D(E,x) (1~+ “*‘f:’) : (22)

1}
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I15P%(x) = A2D(m, x) + ...

to our data (except for the scalar case S, which is fitted without
any resonance, see below). The values of the parameters (in A,y
unites are as [ollows:

C(m) ma=0.£07  A2=30.+1 Ey=9.9+1.2
(K) y=3.L1. AZ=32.4 1. Eo=9.8-+0.8
(KY  mp=0debl . Fo—I8401  E=08.108
(6) =Tt Jheitgsod Eo=13.6-+0.7 (23)
(A Ay =981 7 07103 Eo=10.040.7
(S) Eo=10.6=-0.9

First of all, both pseudoscalar curves rapidly go up. The pion
becomes massless, and the correlator decays at large x as 1/x* (see
details in C2), so our ratioc R(x) grows as x*. The same rising ten-
dency is observed for the kaon, although it is less rapid (respecti-
vely, we get the nonzero kaon mass (23).)

New element in this figure are our results for vector and axial
channels. 1f one compares them with the experimental curves
(Figs 1 and 2) discussed in section 1, he notes that the shapes of
both V and A curves are reproduced correctly, including in the vec-
tor case even such details as the shallow minimum at x~0.2 and
the striking tendency of R, to remain close to unity in wide x ran-
ge. Our data are systematically about 109 below the experimental
curve, but this is obviously due to the fact that we have not inclu-
ded perturbative quark-antiquark interaction (the ag/m correction).
So, accuracy of our predictions of this correlator is really remarcab-
le: we claim that we have reproduced it on the level of 109 effects,
while the correlator falls from xA,,=1/3 to 1 by about three
orders of magnitude!

High sensitivity of the shape of this curve to resonance parame-
ters is also seen from the K (strange vector) curve: it looks diffe-
rent in Fig. 5, but actually our fit shows that it is only due to
slightly larger coupling constant: f,./f,=1.1. Such trend is consis-
tent with the sum rules estimates [11].

Our data for the axial channel are also qualitatively consistent
with the phenomenological curve shown in Fig. 2. The fitted mass
values give m,/m,=1.40+.25, and, comparing it to the experimen-
tal ratio 1.6, we get nice agreement. For the coupling constants we
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Fig. 5. The same as in Fig. 4 but for the complete propagator. We have included

here both wud and ws-type currents (see notations in the leit lower corner). The
dashed lines are the it discussed in the text.
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get ,/fb=0.640.35, to be compared to the phenomenological ratio
1.0 obtained in section 1. Although there is no formal contradiction
here, we may claim that even deviations seen are in reasonable
direction: experiment is for the «effective A4,» (all 3n-states in this
mass region), while our «theoretical A;» does not include the nonre-
sonance states nearby (note that Ey found is close to the A, mass).

One comment concerning the scalar channels. We have found
that our scalar correlator decays rapidly, and it is unlikely that the
only experimental scalar /=1 resonance a¢(980) significantly con-
tributes to it. (Thus, we add new arguments in favour of the
long-standing suspicions [9] that A,(980) is not a normal gg
meson but a gggq or ggq state.) Good fit to our data is given by
the nonresonance continuum only, with the thresholds at Eo/E=1.5.
(Even larger «gap» to the lowest physical states in this channel,
about 1.7 GeV, was suggested in Ref. [10] in the QCD sum rule
context.)

Finally, few words about the absolute scale of our predictions.
In the preceeding works we have postulated that A,, =220 MeV, as
suggested by fits to deep inelastic data. Now we see, that all pre-
dictions (23) suggest another scale A,,~150 MeV. Although such
Apy value is still far from being definitely excluded experimentally,
we have to remind the reader here that the absolute density of the
«instanton liquid» was also not actually firmly determined, thus this
observation most probably just indicates that our liquid is «a little
bit too dense» in these calculations. We have found good qualitative
description of different correlators, but the absolute normalization
can only be fixed in future more detailed works.

5. SUMMARY AND DISCUSSION

Our main results can be summarized as follows: all mesonic
correlators are correctly reproduced in the «instanton liquid» model
for the QCD vacuum. The most striking points are the following:

1. Calculations of the flavor-nonsinglet vector current correlator
have produced the results, similar to the phenomenological curve
even in slightest details. Most remarkably, this theory does reprodu-
ces cancellation of all corrections to the free quark propagation in
wide region of distances, which experimentally is seen as some «fine
tuning» of the parameters of three rho-type mesons and the nonre-
sonant continuum,
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2. Theory predicts quite different behaviour of the axial correla-
tor, suggesting the A, meson to be essentially heavier than p. The
‘mass ratio is roughly consistent with the phenomenological one,
while the A coupling constant is predicted a little bit smaller than it
is observed in 7 decays.

3. We have found that our data for the scalar channel do not
suggest any strong resonances: they can well be fitted without
them. As the Particle Data Tables contain no suitable ud scalar
resonances (Ao(980) is too light, and it was long suspected [9] not
to be a gg state), this conclusion is phenomenologically wellcomed.

Let us also make a parting comment on the relation between
our theory and the OPE-based sum rules. They are not just diife-
rent formulations of the same physics: OPE ignores contributions
which are nonsingular at x—-0, while we have ignored radiative cor-
rections {on which the OPE analysis is significantly based). If our
theory is true, we see no justification for application of the OPE
formulae at distances of the order of 1/2{m where they are actually
used. Thus, although in vector and axial channels the OPE formu-
lae do reproduce data well enough, we think that any conclusions
about the vacuum structure based on them should only be taken as
qualitative indications.
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