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ABSTRACT

Should the bunch inevilably extend with the current

increase, or, on the contrary, can one manage tlo

shorten it? In other words, is it possible to design

such a storage ring, where with an increase in the

number of particles the bunch will not lengihen, but,
on the contrary, only shorten?

© Hucruryr adeproii pusuku CO AH CCCP

1. QUESTION

The effect of a bunch lengthening with an increase in the num-
ber of stored particles has been observed in many high energy
physics experiments. An explanation to this phenomenon is found
out in models taking into account particle interaction due to the
inhomogeneity of a vacuum chamber (cavities, plates etc.) [1, 2].
So, the possible way of bunch lengthening becomes clear. Though,
there is no answer yet to the question whether this lengthening is
inevitable. Should the bunch inevitably extend with the current
increase, or, on the contrary, can one manage to shorten it?

In the experiments there was observed some shortening, though

a weak one and on the threshold of an effect, and then with the
current increase it was changed by lengthening. Is it a result of
fundamental limitations or of some particular peculiarities of the
facility?

In other words, is it possible to design such a storage ring,

where with an increase in the number of particles the bunch will
not lengthen, but, on the contrary, only shorten?

2. MODEL

Let us assume, that the fields, induced by a bunch in the vacu-
um chamber structure are damped during a sirigle revolution, i. e.
the storage ring provides no multirevolution memory. The longitudi-
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nal field of a particle, integrated over its closed trajectory can be
described by a wake function W(x) (where x is the distance
between particles) or by its Fourier transform-impedance:

Zk=a§ Wix) e ™ dx. (1)
0

Let us consider a model system with a step-like wake function:
Wix) = Wy0(x) . (2)

The choice of a sign Wo> 0 corresponds to coherent energy loss.

Let us show, that for such an interaction the bunch shorten with the
number of particles.

3. STEADY STATE

In this part we follow [3]. The linear density A(x) of a bunch in
the thermodynamic equilibrium satisfies the Haissinski equation [4]
which can be presented in the following form:

dn A

e ﬁ“?{x— -%—i GS dx’ Mx’) W’(x"-—-x}} ¢ (3)

The second term in the braces takes accounts of the action of the
bunch seli-consistent field. Here N is the number of particles, A, is
the r.m.s. deviation at a zero current, x—RF rigidity, defined in
such a way, that »x is the energy transfer per revolution of a par-
ticle, advancing the equilibrium one at a distance x. The density is
normalized to unity:

af Ax) dx=1. (4)

— oD

For kernel (2) the nonlinear integral system (3, 4) allows an
analytic solution. In case of a strong own field, when

Ne*W,

v >1, (5.0)

n(x) = ‘ (5a)
l—|—pr{ ~_-1-[A,--x“‘l}
_dn
Mx) = v (5b)
The shiit of a bunch as a whole
e L (5¢)
2%
The bunch length
o 2&?1{ __is._izﬁ (5d)
NEEWJ} = Xn .

No other solutions for system exist.

4. HAMILTONIANNESS OF THE SYSTEM

Generally speaking, a relativistic bunch is a non-Hamiltonian
system: the head particles act on the tail ones, while the tail do not
affect the head ones. In this case Newton’s Third Law does not
work. Therefore, the law of energy conservation cannot be applied
to this case, the energy of relativistic motion of bunch particles can
increase infinitely at the expense of the bunch motion as a whole.
The system with a wake function (2) has a remarkable property —it

is equivalent to the Hamiltonian one, its energy of particles relative
motion is conserved.

Let us prove this statement,

The motion of particles in a bunch can be described by a system
of N equations:

X4 Q=) Flx;—x),
j

) pﬂ :
Fix) = £ 0*W(x), (6)

H

where @ is the frequency of one-particle synchrotron oscillations. In
this case, the force F is convenient to be presented as a sum of two
terms:

Fir)= 2>+ 2 sign(x),
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(7)

For the center of masses coordinate x it may be found from (6),
that

i}s}%f:% (8)
oscillations with a frequency Q with respect to the equilibrium
position (5c¢)

Substracting (8) from each equation of system (6), for relative
deviations £ =x;—x we obtain:

£+ Q%= 207 sign (5— &) - (9)
:‘
In this variables the acting force is equal to the counteracting force

and we have a many-particle Hamiltonian system with a Hamil-
tonian

-'Z ( 522&) Bis Fo Z L g (10)

.f-:::r

n;, & are canonicaly conjugated values.
A canonical momentum n; has a dimension of velocity, propor-
tional to the relative energy deviation e:

;= CCE; (11)

where ¢ is the light, a= £':;—Ermnt:lmﬁ-n’mm compaction factor.

1]
The relative motion energy of particles is conserved, f/=const,
hence, we obtain an estimation for the bunch length A for the case
of a nonweak seli-field:

2H

N :
FoN?

(12)

In particular, when H=0 all the particles are in the same point,
A=0.

Due to the influence of a thermostat (synchrotron friction and
noise) the system comes to a thermodynamic equilibrium, which is
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described by Gibbs N-particle distribution. This state is sure to be
stable. By integrating N-particle density over N—1 pare of vari-
ables we obtain a single-particle phase density, by integrating it
over momentum, we obtain a linear density, A(x), satisfying the
Haissinski’s equation with

2 ﬂzGI:}EE

P (22

(13)

g2 is the root-mean-square spread of relative energy deviations
determined by the synchrotron radiation friction and noise.

So, the state of system (5) is stable, its coherent oscillations do
not increase.

For further analysis it is important to estimate the decrements
of oscillations.

5. COHERENT OSCILLATIONS

_ In a stationary state (5) the attraction of particles due to their
own fields is balanced by their thermal motion. The condition of this
balance can be written as an equality in the order of magnitude of
a coherent longest wavelength oscillations frequency . to an
average frequency of the thermal motion of a particle along the
bunch w,:

W~ @y (14)

At a considerable shortening (of a bunch) the movement of par-
ticles is absolutely unharmonic, the spread of thermal frequencies
dw, is in an order of w,:

Sy = @y (15)

Relations (14), (15) correspond to a strong interaction between a
wave and resonant particles, which in case of stable stationary
state results in the Landau damping with a decrement of an order
of the oscillation frequency. With a decrease in the length of the
wave of the coherent motion 1/k the decrement increases ~ku,,
v, =mn, is the spread of velocities of the movement along the bunch.



6. SENSITIVITY TO WAKE FIELD VARIATIONS

In previous sections it was shown that for an infinite-step wake
field (2) (the sign here is significant) the bunch shortens more and
more with the increase of the number of particles, tends to collapse
into an infinitely thin disk.

To what extend is this result sensitive to the wake function vari-
ations? It’s no doubt, that every real function will differ from this
idealization by some features at short distances and by turning into
zero at large ones. A real step differs from the ideal one by 8§ W (x)
at x<<A; besides, it has some finite length a, decreasing noticeably,
or, perhaps, changing its sign at x>a. It is obvious that the small-
ness of changes of the stationary state requires that the influence of
perturbation 6W on the self-consistent field of the bunch should be

small, which is equivalent to insignificance of the corresponding
correction in the impedance 8Z:

oz( ) <l2(D)].

(16)
where

(17)

is the Fourier representation of a step function. This is necessary

but not a sufficient condition of the smallness of the stationary
state change. If a general shift of a bunch xo (5¢) exceeds the step
length a, then, as shown in [3] the bunch is devided into a succes-
sion of shortened sub-bunches, following one another at an interval
~a. Therefore, the condition

a=> xy (18)
is also a necessary one and together with (16) they constitute the
sufficient condition for the weakness of a change of the stationary
state by deviations of the wake function from the ideal step.

The addition of 8Z to the impedance results in the shift of oscil-
lation frequencies in the complex plane, which in case of its big
enough value can result in the bunch instability. The stability of
long-wave oscillations kA=1 is guaranteed by condition (16). The
stability in the short-wave region needs a special consideration. In
this case, the instability is possible only when a coherent shift in the
frequency 6w, originating from the impedance 6Z:, exceeds the
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Landau’s damping decrement:
| bwe| Zkvr | (19)

where |
Ne*Q?

5(!.'IE= —L.IEEISZ}: T-—— =
2m Ax

Hence, for the impedance 6Z,, growing with & not faster Fhan
linearly requirement (18) appears sufficient to provide the _stablllty.
In an opposite case the stability condition becomes more rigid:

(20)

S2f- #
2 | et <t o
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7. ON THE POSSIBILITY OF A STABLE COLLAPSE
FOR OTHER WAKE FUNCTIONS

The distortion of a potential well due fo a bun_ch self-field,
which is taken into account by the Haissinski's equation (3), may
provide qualitively different results, depending on the type of the

wake function W(x).
For a weak self-consistent field, when

Nezl.Z(E!;]l =

\{5; nAF

its influence on the bunch density can be evaluated via a perturl_{:sa-
tion method [3, 5]. In this case, the sign of the e'ffect__(lengthenmg
or shortening) is determined by the sign of an imaginary part of
the impedance. The effect in this region is weak and consequently of
little interest. ' _

An opposite to (22) situation has been conmfiered in-[3]. Sl{m-
ming up the results obtained there, one can arrive to a conclusion
that with respect to a corresponding solutions kernels are divided
into 4 types:

i) with a finite length solution;
ii) with a single-collapse solution;
iii) with a succession-of-collapses solution;

(22)
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iv) with no solution (corresponds to lengthening via widening).
The latter comprises, for instance, a §-function derivative with a
negative sign. The functions W(x) localized at small distances com-

paratively to the bunch length, having there singularities with an
substantial contribution to the impedance, correspond either to the
iv- or to the i-type.

Solutions of the ii-type correspond to the positive functions
W (x) nondecreasing over the distance of a bunch shift as a whole,
as well as to the functions with a slight integral difference from
them. '

We did not manage to give a rigorous proof concerning the
problem of a collapse stability for the general case of kernels ii.
But some considerations in favour of the stability of these states
though not proved rigorously, seem quite plausible.

The impedance Z (k) corresponding to the ii-type of nucleus de-
creases with the growth of argument as 1/k or faster. Hence, the
parameter %ﬂ—. (wx is determined by (20)), which characterizes the

4
value of Landau damping, increases with 2 not slower than line-
arly. Therefore, longest wavelength disturbances, i. e. dipole and
quadrupole ones, seem most dangerous concerning instabilities.
Dipole oscillations can be considered as a motion of one macropar-
ticle, quadrupole ones—as a motion of two macroparticles. It is
easy to show that both these systems are equivalent to Hamiltonian
ones (in the sense of the 4-th section). Consequently, the energy is
conserved here, and a build-up of oscillations is impossible. Estima-
tion of the thermal motion of .particles, which make up macropar-
ticles, leads to a conclusion on the Landau damping of these oscil-

lations. And since most long-wave oscillations are damped, others
will be more so.

8. SHORTENING-PRODUCING IMPEDANCE

So, to make the bunch shorten it is necessary to make a shorte-
ning-producing wake function, shortening-producing impedance —the
ii-type ones in the storage ring. Is it possible? If possible, how?
Unfortunately, the author failed to find in the references dealing
with the calculation of wake fields at least one suitable example.
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On the other hand, the nonexistence of such objects is not proved
either. The question still remains open.

The report about bunch lengthening on ADONE [6] contains
some encouraging information, where based on the measurement of
the length and scaling theory [2, 7] the conclusion is made that the
impedance .is independent of the frequency (of k in our terms) in
the long-wave region, and is inversely proportional to the frequency
in the short-wave one with a boundary of approximately 10cm.
Measurements concern the region 6 —16 cm.

Such an impedance corresponds to a step wake function with a
step length of about 10 cm. Bunches several times shorter than step
length should shorten, if the wake function remains shortening-pro-
ducing at smaller distances. |

The lengthening observed in these experiments may be unders-
tand by taking into considerations that the bunch had a length com-
parable with the boundary one.

9. QUESTION

It is clear, what the impedance should be to make the bunch
shorten to a single stable collapse. Is it possible, and if possible,
how can this impedance be created on the storage ring orbit?
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