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ABSTRACT

The egquations of motion of a spinning particle in an
external gravitational field are derived in a simple
and general way. The extra force that makes the mo-
fion a nongeodesic one is a gravitational analogue of
lhe Lorenz force. Arguments are given that [ix the
ceneral form of the wave equation for particles of
arbitrary spin in electromagnetic and gravitalional
fields.

© Hucruryr adepnoil pusuku CO AH CCCP

1. The motion of a spinning relativistic particle in an external
gravitational field was for the first time considered many years ago
by Papapetrou [1]. Using for the derivation of the motion equations
the method of Fock [2] he has shown that a spinning particle does
not move along a geodesic line. Analogous results have been
obtained later by means of Grassman variables by Barducci,
Casalbuoni and Lusanna [3] and by Ravndal [4] for a spin 1/2
particle in a gravitational field.

In the present work the motion equations for a spinning particle
are obtained in a simple and general way. Here a remarkable ana-
logy becomes obvious beiween the motion of a charged particle in
an electromagnetic field and the motion of a spinning particle in a
gravitational one. The equations obtained are valid for an arbitrary
value of the particle internal angular momentum. At the spin 1/2
they coincide with the equations found in Refs [3, 4].

The close connection between the classical and quantum-mecha-
nical consideration in our approach allows one'to get within it the
general form of the relativistic wave equation for a particle of arbit-
rary spin in an external field. For an integer spin the equation

lound coiacides with that proposed earlier by Christensen and
Duff [5].

2. It is well known that the canonical momentum p,=i#ad,
enters a relativistic wave equation for a particle?’in external electro-
magnetic and gravitational fields through the combination
[l,=ihd,—eA,—h2“l,,. Here e is the particle charge, A, is the
electromagnetic vector-potential, [, ,, = —1',;, is the spin-connection
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of a gravitational field, 2" is the generator of the Lorenz group for
the representation to which belongs the wave function ¢ of the par-
ticle considered. Greek and Latin indices are world and tetrade ones
-correspondingly. Anticipating the future limiting transition to classi-
cal mechanics, we keep explicit for the time being the Planck con-
stant k. Note that at the second application of the operator II, it
contains alongside with 8, the Christofiel symbol. But being multi-
~ plied by & it acquires uncompensated small factor and its presence
is therefore inessential for further consideration.

The Heisenberg equations of motion can be obtained with the
covariant Hamiltonian

Hoz== g™, (1)

The accepted metrics signature is + — — —. Below we shall dis-
cuss how one should include consistently into this Hamiltonian the
terms that contain explicitly the electromagnetic field strength
F,,=d,A,—d,A, and the Riemann tensor :

R“vabz —2[3p|1v,aﬁ ﬂvluub'l'QI: p.m' v, f: lv.m ry,fb}! -

For the transition to the classical limit let us present as usually
the wave function as {y~exp (iS/h). Then pyp=ikd,Pp=(— 3,S)}
so that in p, the quantum small factor % disappears. It is absent
also in the electromagnetic term —eA, entering Il,. But the gravi-
tational contribution —#AZ* T, into [, generally speaking,
vanishes in the classical limit #—0. We shall assume however that
the particle spin is so large that the tensor of its internal angular
momentum S%=hZ" possesses the classical limit. So, as the classi-
cal Hamiltonian we use as before, for the time being expression (1)
with Il,=p,—eA,—S8I,q. The classical Poisson brackets are
defined in a standard way:

{Pus X"} = — 8y, (2)
!Sab‘ Scd} . T,Im- de—f—ﬂhd Sar_,rlnd Sbf_,r].l}c Su_ﬂ‘; {3}
here n*=diag (I, —1, —1, —1) is the flat metrics. The motion
equations are found now easily:
dx" ay a
; ={Ho, x*) =2g"" T, ; | (4)
i Y o O HA e
ds® _{Hﬂ’ ds}— L ds ds o Faﬂ STR s ds (°)
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While the term with the Christoffel symbol in the right-hand-side of

(5) arises due to nonvanishing Poisson brackets {g*, II,}, two
other terms in the force are due to nonvanishing Poisson brackets
{11, lg). The mentioned eq. (5) can be rewritien evidently in the
covariant form as well: '

Dx*
Ds

=2eF*s X% — 8% R%3qp £*. (6)

Since the dimensionality of Hamiltonian (1) is energy squared, the
dimensionality of the conjugated variable s is unusual one. Going
over to the proper time v by means of the relation s=1t/2m, we
rewrite eqs (4), (6) in a more customary way:

f ;
D% R oo T
T ﬂ—mFﬁxﬂ“.ngﬁu{;xﬁ, ; {63}

[t should be noted that the quantity g.ex*#? still is an integral of
the motion equations (5), (6), (6a) in total agreement with the evi-

dx® dxP
dent condition gep— T — =1,

Note also that in the case of massless particles; with dv=0 on
the trajectory, one should use eqs (4) —(6) (naturally, at e=0
since there are no massless charged particles), s being some para-
meter varying along the trajectory (see, e. g. Ref. [6]).

In the particular case of spin 1/2 the obtained motion equations
coincide with those found in Refs [3, 4]. However, just in this case
account for the terms with the Riemann tensor in egs. (5), (6),
(6a) is of somewhat conditional character. The quantum small fac-
tor k is not compensated here so the effect discussed could hardly
be singled out from other quantum effects. o '

The last term in the right-hand-side of eqs (5} (6), (6a) is the
new force that makes the spinning body to deviate from a geodesic
line. Our derivation makes its nature quite obvious. Like the Lorenz
force it arises due to the nonvanishing Poisson brackets {Il,, g}, or
in the quantum case due to noncommutativity of II, and Ilg. The

correspondence here is evident: eFEﬁﬁ—?S“bR@m, the internal

angular momentum S$° is the analogue of the cha'rge-'_e', the
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Riemann tensor is the analogue of the electromagnetic field
strength. The discussed new force could be called the gravitational
Lorenz force.

3. Using the Poisson brackets (3), one can easily derive from
Hamiltonian (1) the motion equation for the tensor of internal
angular momentum. In the variable s it is

§% = — 28 Ty o (n* S*— 1y’ 5°) , (7)
Here however the following discrepancy arises. The tensor of inter-

nal angular momentum of a particle has in its rest frame space
components only. The covariant expression of this fact is evident:

Xg ST =V, 8% =0 (8)

here V\, is a tetrade. It can be easily checked however that eqs (5)
and (7) in no way guarantee the required constant value of ¥,S%.

The way out of the contradiction is prompted by the squared

form of the Dirac equation in an external electromagnetic field. It
consists in the addition to Hamiltonian (1) of the term eF,,S%.

Besides, the above pointed analogy eFaf,i—v-—-;—S“”Rﬂm combined
with the symmetry condition Rapca=Rc4ss prompts the form of one
more additional term: — —‘i—RaMS“”S‘:f’. Arising in this way the cor-

rect Hamdltonian

H=— " My lly+eFup S — — Rups S S (9)

leads to the following motion equation for the internal angular
momentum

S-ru'
2m

Sru.‘;z —(21“ 11u.t’f+ ik .Fg;'— Rc,&'d) [naf S.ﬁ{_ q-!w Saf) : {10]
i

Now as can be easily checked with eqs (6a) and (10), indeed

'ﬁwhS”%=& (11)

(" V aS™), .One

When calculating the derivative aﬂf—(jasa”’)zi
dt dt

¥ - !,

should not forget to differentiate the tetrade Vua, 1. €. 1o calculate
its Poisson bracket with the Hamiltonian. One should take into
account also the definition of the spin connection

ﬂm=$wmﬁhﬂmﬁl (12)

In virtue of (10) the evident condition S,,8% =-const is valid
also.

Note that simultaneously with the modification of the spin equa-
tion, Hamiltonian (9) leads to additional terms proportional to the
derivatives of the field strength and Riemann tensor in the equation

eled

; . As to the electromagnetic term arising in this way, it is in
T

essence known for a long time. This is just the force that in the
case of neutral particles results in the Stern — Gerlach splitting of a
beam in polarizations in an inhomogeneous magnetic field. Here,
however, we shall not consider these terms since they are of a
higher order in the small ratio of the size of the body to the charac-
teristic lengths at which the lields vary.

Going over to the nonrelativistic limit, one can easily see that
the considered interaction eF.,8* corresponds to the gyromagnetic
ratio g=2. I this term were taken with an arbitrary factor, then
for seli-consistency, i. e. for the validity of condition (8), the Hamil-
tonian should be supplied with one more term, so that the total
electromagnetic additional term to Hamiltonian (1) would be

for

£ oFu S mioa(g s @) LS TIP Fu TH, S, (13)
2 2 ol

The presented considerations are in essence the reformulation of the
known derivation of the spin equations by Frenkel [7] and
Bargman, Michel and Telegdi [8]. An analogous modification of
Hamiltonian (9) would be necessary if one changed in it the factor
at RabcaS®’S®. Thus, it is clear that the choice of the Hamiltonian of
a charged spinning particle in form (9) is anyway the most simple
and economical one. Below we shall return once more to this
problem.

4. Starting from Hamiltonian (9), one can write down now the
general wave equation for a particle with spin in external fields:



{ g"ihDy—eA,) (i(hDy— eA,) —m?—
e ehFay SO % Rupey S zﬂf} TR (14)

Here D, is the covariant derivative containing spin connections and,
if necessary, Christofiel symbol. We shall not discuss here consis-
tency conditions on the wave function 1.

Let us compare (14) with known wave equations, starting from
the electromagnetic interaction. In the case of spin 1/2 we have
come evidently to the usual squared Dirac equation. If we wished to
include into the equation an anomalous magnetic moment, then a
new term would appear in it corresponding to the second term in
expression (13). Therefore an evident trouble arises: such an inte-
raction containing a mass in the denominator grows with energy
and violates the renormalizability of the theory.

In the case of spin | the choice g=2 corresponds to the
Yang — Mills type switching on of the electromagnetic interaction of
charged vector bosons. At the Higgs mechanism of the mass gene-
ration for charged vector fields such a theory is renormalizable. But
even at the hard mass insertion in the nonrenormalizable electrody-
namics of vector particles, g=2 corresponds to the smallest growth
of divergencies. Note by the way that the minimal switching on of
the electromagnetic interaction in the Proca formalism for massive
vector particles corresponds to the choice g=1. Here already the
presence of the second term in expression (!3) demonstrates expli-
citly the nonrenormalizability of this theory.

Electrodynamics of higher spins is nonrenormalizable. But here
as well the choice g=2 would correspond to the smallest growth of
divergencies. It should be noted that neither the Rarita — Schwinger
equation for spin 3/2 at the minimal switching on of the electro-
magnetic interaction, nor the Fierz—Pauli formalism for the elect-
rodynamics of spin 2 particles [9] agree with eq. (14) and give
g=2.

The gravitational interaction is nonrenormalizable for particies
of any spin. But in this case as well the analogous arguments fix
the factor at Rasca2?Z°. Its change as compared to (9) and (14)
would demand the introduction of additional terms singular in
mass, like the second term in (13), and in this way to an additional
growth of divergencies in the theory. From this point of view the
choice of Hamiltonian (9) and wave eq. (14) is indeed the best one.

8

This wave equation corresponds to the «Feynman» gauge for the
field ¢. Such an equation for a particle of arbitrary spin was propo-
sed previously in Ref. [5]. For an integer spin eq. (14) agrees with
the result of the mentioned paper. (When comparing, one should
have in mind different normalization of the spin operators 2%.) But
for a half-integer spin there is in general case a difference in the
numerical factor at Rgpca2® T

We start from spin 1/2. The squared Dirac equation in a gravi-
tational field looks as follows

(wg“"DuD.-—m2+~i-R) p=0; (15)

here and below we put /i=1; the electromagnetic interaction is not
considered anymore. The equation proposed in Ref. [5] agrees with
(15). As to our equation, it leads to the factor 1/8 instead of 1/4 at
R. However, just in this case our arguments based on condition (8)
fail: the properties of the spin matrices E“f’:—é-cr“”:

=;—(?“?"-——~pby“) are such that the term discussed anyway degene-

rates into the scalar curvature R without any consequences for the
spin motion.

For spin 3/2 our equation (14) agrees with that proposed in
Ref. [5], the factors at Rapa2*2° coincide numerically by accident.

~As to the squared Rarita— Schwinger equation in a gravitational

field

(“g"v Dy Dy—m®+ 4L R) e "‘é‘?“?'!’:‘?ilm p° =0, (16)

in both approaches the main term, with the Riemann tensor, that
influences the spin motion, is reproduced. But in both approaches
another factor at R arises: again 1/8 instead of 1/4; besides, the
additional term R,y" with the Ricci tensor arises.

It is important, however, that in the most interesting case of the
Einstein spaces where R}=0 and R=0, eq. (14) agrees trivially
with eq. (15) and quite nontrivially with (16).

The disagreement with the Dirac equation (15) which exists at
R==0, can be eliminated by modiiying eq. (14) in the following way
for hali-integer spins:



( _gl-l‘r'D" Dv‘—mﬂ_!_ "i‘“ﬁabca‘zab E"'—d—f— %R) ¢=(} o (17)

The disagreement with the Rarita— Schwinger equation is also
partly eliminated by it. As to the spin motion, the introduced addi-

tional term %R in no way influences it.

For higher half-integer spins eq. (17) looks more preferable
than that proposed in Ref. [5] in virtue of the above arguments. *
A curious situation takes place for integer spins. There eq. (14)

b gy ; : . [.B. Khriplovich
(coinciding with the corresponding equation of Ref. [5]) reproduces

exactly the equations in the Feynman gauge for a photon and gravi- & Spinning Particle in a Gravitational Field
ton in an external gravitational field
gD D Ay bR A sl H.B. Xpunaosuu
— 8Dy B [ A+ R+ RP 0 —2R . frs=0. (19) YacTHIA ¢ BHYTPEHHHWM MOMEHTOM B IDABHTALHOHHOM noJe

Not only the actual term with the Riemann tensor in eq. (19) is
reproduced, but also all the terms with the Ricci tensor in both
equations are.
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nov; the latter in particular attracted my attention to Refs, [I, 4].
I am grateful for warm hospitality to the Stefan Banach Mathema-
tical Centre in Warsaw where in October 1988 at the School on
Gauge Theories this work was started.
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