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Abstract

4 method of the construction of the auxiliary linear

problems sultable for the inverse spectral transform method
is considered. An algebraic form of the compatibility condi-
tions for these linear problems is discussed for the three-

-dimensional space.

-

1+ The starting point of the inverse Spectrél translorm
method is the representation of the nonlinear differential
equation as the compatibility condition of the certain zet of
auxiliary linear problems (see e.g. [1] )« The algebraic foyws
of these compatibily conditions are the well krown lLsx nair
[2], the commutativity condition [Ly []=1L4ls~LLs=0 [,
Manakov's L=A=B triad [4] or Zakherov's algebraic syastem [5].
Recently Manskov and Zakharov have proposed s new method for
the construction of the multidimensional auxiliary linear nrob-
lems based on the nonlocal Riemann conjugation problenm [ESJ.

Here we present the general formulation of this nonloonl
Riemann problem method in the generic multidimensionsl case
and consider the possible algebraic forms of the compatibility
conditions in multidimensions.

2. The starting point of the Manakov-Zakharov method [6]
is the nonlocal Riemann problem

Yalnx)= _fda’%(ﬁjx) R(xA;x) (1)

where )n‘:‘i: ?f=(if:,--;.¥d) and%" ([)i are boundary values ol the
analytic function on the contour F and E().ihj'x) is the cer-
tain matrix function. It is assumed that the function E obein

the equations (gh- 5,5%)

Ox: R0 x) =T 00RO ) - ROV 0T () e
(= :ff}.d')
where T,()) are certain matrix functions and [T, (A) T (0)] =
: . pdef P ,

= 0. Then the operators 2’; (.;D,; -f'-w JX:{""FI' ﬂh}) are in-
troduced and with the use of (1) and (2) the set of operstors
L" of the form L;' = E q,:__‘ m,(!) 9:1___9?' which have
no gsingularities on A {# constructed. The compatibility of
the linear system L W=0 (¢= 1., K) is equivalent to
the nonlinear equation. Some concrete examples have heen conai-
dered in [6].

3. We would like to propose a scheme which naturally
leads to the conjugation problem (1) and ite generalizations.
We start with the formal expansion problem



Go= JdW G0 ROuAsx)

where ):()u__.-:} );,f_)) ):'::(xij__:’x,f) 3 % and (//; are mat-

rix functions an” R(,a}'}‘jx) ig the certain matrix function.
Note that all M\, are independent variables. We assume that
R()‘i)‘j-x) satisfies the equations

ROy )= RN )= R A : i
9?&': R(}‘;)Ux) /\t 2{)«})‘,!) R(A‘A}x))‘f (fl.ri...of)

P
where [\ AxJ=0 . Denote Qf'{é'{gx‘-{.r £ M.« The problem which
we are in%eresting in is to construct the operators ¢ of

S (x) Q:‘.-. @:‘f which have no

the form L‘- — W

2 oo M 8
singularities at ' \ '3 o0 (¢=i-, ,,fJ. gimilar to [6] one has
Lty B0 =Sd* L) W00, ) ROLAX)-

Tt is not difficult to see that it is not possible to con-
struct such operator L if all the variables AIJ-..; Ad
are independent ones, Indeed, let the highest order terms in
L is lp(g"a"'f ‘@J) « S0 Lq):(P(ai_}"J‘ QH)SV-P(?V(P(A‘J} hd)‘f‘ﬂ
where A contains lower order terms in 3{,--} 24 . The term
V'P(?tiy-;,/\#) cennot be excluded at all.

This consideration shows also that the only way to con-
struct the operator }_, without singularities at ,\f'—ﬂroﬂ
is to impose some constraint on the variables Ag, .., Ad .

Let the variables ).‘J__? \d are constrainted by the algeb-
raic eguation

(P()‘f-_}”'))'lf)"": C::*Cﬂﬂ'S‘f! (5)

where Lp(jij-.?ld) is some polynomial.
Proposition. If the variables )‘1;_,?).‘ in (3) obey the

constraint (5) then the operator [, which have no singulari-
ty at );,‘-r o0 is of the form L - ‘P{‘g{,"u‘ad) ol e

tndeed Ly = P(Ds.., 08)@ +AY = P(In, ) Ixa) ¥+
+(,Ut,0(,q$__,’,\d) + A - The highest singularities on }d}--., Ad
which are collected to the term (U Y(Ay., M) are annihilated
due to the constraint (5). The singularities of the lower

order are annihilated by the procedure described in [6].
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An example: ?(}y.,})g): ,\;-;A;t..-r):f::mfrs#. The cor-

responding operator [, is L "'th*""’ 9;.,_ m-gxt._FW A
Let now we have few constraints s

Gy, At) = Cy = const

So we are able to construct M operators L,,L without singu-
lerities. Let us consider the system of A linear equetions

Lg(}/=0 (t,i-_—.;..?ﬂ)_ (7)

A necessary condition of the compatibility of this system 1s
the existence of non-empty cross-section of the surfaces (6).
If the crogs-section of the surfaces (6) is empty then the

(L=1.., 2) (6)

system (7) has no nontrivial solution.

Let the constraints (6) are independent (i.e. all func-
tions (), ( )‘{; s, ),,{) are algebraically independent) and their
cross-section has a generic complex dimension t{-fz .
Ijt us parametrize (uniformize) this cross-section 5" by

-1 variables o o The common solutions of the
corresponding sy;fe?n {{f}/agegend on these uniformized variables
A, + For these common solutions of (7) the relation (3) is

equ.{valent to the following

n-d
H(p %)= 50{/1’5’0”9 Gl D Rl p;x) @
where /U=(,ﬂ1,-~,/f¢) and _?(’/uf) is the certain measure

on the manifold 5" . One can consider (8) as the ﬂ'—a{ =dimen-
sional generalization of the nonlocal Riemann conjugation prob=
lem (1), namely as the problem of construction of the (may be,
analytic) function whose boundary values (; (/4 on the
n-d-14 -dimensional surface [T are related by (E) with the
certain matrix function E(,u;'//‘, x) » Unfortunately by now the
problem (8) has been effectively solved only in the one-dimen-
gional case f1-d = 1 (see e.g¢[6])s In this case we arrive

to (1) ':,Ur—"»/\ ) and one construct the linear system (7) by the
method given in [-6]. The possibility of the generalization of
(1) to the multidimensional menifolds has been discussed by

S« V.Manakov.



4s At the threedimensional space ( a{ = 3) we have two
independent constraints tﬁi()“,h, ,l:.):(_( (a(_r'f,-'"-) and a{r;ﬁr5,= 1
in the generic case.

et us consider few lllustrative examples.

‘e For the constraints of the form :

¢, = Al (As)As — B’i(x\s)=0)
Y = Aa (M) Az “‘B.z{/‘\s);*(?

»¢h . : - a1
vhere AU Bt are polynomial

(9)

,one has two operatcrs

L= Ad)os, = Bi(ds) (=42 o)

whera ,4,_.'{93-, and g;'(Qh) are differential operators uverf;}

Such that 4=‘r§¢‘4r'f‘3n), Po = 3,‘{93.:). The system (9)
delines the one~dimensional manifold f" which can be obvi-
ously parcmetrized by the single variable As and \,=B8s(h

_ ¥
A= Ba (rs « It is the case of one marked variable XJA"”J)
1
which has been considered in [5 6J
Fa The second example is
k- 4 3 2
(ﬁg - )Xy =67Ar = Cﬂﬂs{) (11a)

(1% = Az + P()izj )11)-:0. (11b)

where 6'%—..:[;1 and P(JH }‘1) is an arbitrary polynomial. The
v,
correasponding operators are

Lz = gx.: = 519?%: +‘Zf;:0xf_ +Z&9ﬁ -f-W)
L_z —— 9){3 T E(g){ij 9?(.1)

arhereﬁt(%%{;) "NﬁQ are functions and P(th 9,;_,_) is the
differential operator such that P—-—':i P{'}xi gug « The ope-
rators of the form (12) and corresponding hierarchies of in-
tegrable equations have been considered in [T--1D,4,5]. The -
uniformized variable for (11) cen be choosen as /u:h}.,.ﬁ"hl.
The asystems integrable by (12) and inveriant under the rota-

tions on the plane (}{;}}(;_J correspond to P.-: P()\f—ﬁ‘u_-v. For

(12)

such integrable systems in virtue of (11a) one has Az = const
that corresponds to the trivial evolution law in the wvariable
¥z and to the linearizable systems. The example of such ro-
tatinally invariant system is

E
%J% + g AW+ Igﬂ‘g"tw"‘“ & (13)

U Pl kK
9X3 & J{gxx Wonh

that corresponds to

Li = ﬂ’fz'ﬂt‘. 9)(1: +W
L 9)f3 ‘f‘[lﬁ '—XW

|
JH
Ay

(14)

" where ﬂ:?n +9x_z is the constant, -‘51 = -1, and P =

= ,\:'.F‘)u + The system (13) is linearizable by the 1n1;r-::duct1on

of the gauge variable @(x): Uk _.Z?xzevrg and \\}-—-3 dg. Name-
1y, the system (13) is equivalent to the heat equation for .

QIJQ'Fd’d =¢0. In 8 similar manner one can consider instead of

(11) the case Y = (4 (e, A)=Cq.
C. Let ).;_ Az, )G are the matrix valued commuting variables
and constraints a.re

G ¥V =O=0DYAA + YO A=A AD=0

‘K, ’;‘E= a7
5 ¥ rs)
where [A‘} Ax]=_0 (51'.—_5:1)3) and A!- are constants. The
corresponding operators L r:t are

(e) ¢ K (16)
Lo =03 A,‘DD,(:-’B,K + U () oy, + U, Dy, + Wi (x) .
(‘:'F‘EJ f;‘t" 4‘53)

Since gﬂu (,VAJ _'(PI.EI (,UA:;"FSO;:,' (,VA;_T—' 0 then only two of
the constraints (15) are independent. Their cross-section [7
is the one-dimensional one and possesses the rational unifor-
mization A, = I&-—ﬁ}{t-ﬂs))ff The description of the rati-
onal curves by the quadr:.cs has been discussed in fﬂ

The construction of the Gperatﬂrs L of the form (16)

(up to the redefinition ﬂrtz ...,.0"')_ )whlch gtart with
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[12] + The use of this uncertainty uallows one L-IDJ to prove
the existence of the matrix commutativity representations
[Li}[, ]— in addition to the known Manakov's triad re-
presentations for the integrable systems considered in [ﬁ g].
This is alge vglid for the systems of the type (12) with
L= o TR e YLD [i9].

Por the systams whlch contain tne variables Xr xi ) £
more symmetrically the condition (19) can be also TEpresented
in the equivalent more symmetric form. For example for the
three-dimensional chirel fields type equations (17) associateu
with the operators ‘er (16) (divided hy’f?i ?JJ the compa-

tibility condition is equivalent to the syatem of operator
equalities

[Lc:n:j Lnx]*-- oL tmx: Lm * Fenk Luc +JE§:: Line (22)
LEn=1221 i’::#-k

where there is no summation over re.‘pea.rted :Lmiice-ﬁ and

‘ = 92{)? :El::
DZM: = —'E_fEE 35 9;;: [ Kk, Z{nk:]

y — ?1(: i BZ(;{- "- [
ﬁ‘“: _9:-;(11‘— gx; '+[Z(££‘} Z(nz])

e = 0l £ ¢
th S —.-(j-;r_ RS g’}it +[Z(4'g} Z(:t].

Note that the noncommutative algebraic representations
of the compatibility conditions different from (20) and (22)
have been considered in the other contexts in [:13, 14],

I am grateful to V.E.Zakharov and S.V.Manakov for the
useful discussions,.
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