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ABSTRACT

A generalized Henon system on a forus .if’ cnnsid(‘;rgd

to investigate some phenomena of ‘trans?en{t chaos in

weakly dissipative systems. A. rcl:atmnlshuz:- is numeri-

cally verified between the dismpat_mn, lifetime :-af chaos

and area of stable regions, previously established by
Chirikov and the first author.

Recently, much attention has been paid to investigation of differ-
ent ways in which chaos can arise in strongly deterministic dynami-
cal systems (see e. g. [l]). It is well-known, that the transition
from regular to chaotic motion depends on whether the system un-
der consideration is dissipative or Hamiltonian. At present, either
Hamiltonian systems or systems with strong dissipation (and small
number of degrees of freedom) are quite well investigated. But
there is a large region of physical applications for systems with
weak dissipation. In such systems the conditions for arising chaos
are related, on the one hand, with Hamiltonian chaos, and on the
other hand, with the dissipation itself.

The role of dissipation in systems with Hamiltonian chaos was
investigated in [2]. As a model for a numerical analysis in [2]
there was taken a two-dimensional map of the following type (cf.

! also [3, 4]):

Peit = {pe+Rf(x:) —e- {p;—l‘;"Q}},

- iy ={II+P:+!—]!"2}s (1)
f(x) =x>—x+1/6.

' Dep. of Mathematics, Karl-Marx-University, 7010, Leipzig, GDR.
2 Dep. of Mathematics, Technical University, 8027, Dresden, GDR.

The brackets { } indicate that the variables (p, x) are taken modu-
lo 1. In other words, the motion of system (1) is confined to a
two-dimensional torus with period one in both variables. In the ab-
sence of dissipation (e=0) but for large values of & (£3>1) in the

© Hucruryr adepnoi pusuku CO AH CCCP phase space of (1) there are only small regions in which the motion
is stable, while outside the motion is chaotic.
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It was observed that for weak dissipation (e<1) this chaotic
motion becomes transient in the sence that in the course of time for
t>1., the trajectory (former chaotic) is attracted by some periodic
orbit. Such a phenomenon was previously found in [5] and then ob-

served in many dissipative systems with chaotic behaviour including”

the famous Lorenz system (cf. [6]). As it was shown in [2], i one
increases the dissipation, the lifetime of the stochastic component
decreases, but then, for e—e., it goes rapidly to infinity. At the
same time there appears an altracting set with complicated struc-
ture on which the motion again becomes chaotic. From a modern
point of view, this set is probably a strange attractor, although this
was not strongly proved.

In the paper [2] (ci. also [4]) the dependence of the lifetime £,
on the parameters on the model (1) was numerically investigated.
It appeared that for values & not too near to e the following rela-
tion is approximately valid:

leroS-exl. (2)

Here S denotes the total area of all stable regions of the phase

space (in the absence of dissipation), {, measures the number of -

iterations of the map (1) up to the moment where the trajectory is
«captureds by one of the stable islands. Because there are large
fluctuations of f. in dependence on the initial value (p,, x,), the
value f, in (2) should be understand as an average lifetime, 1. e.
there is taken the average over f. for many different initial values.
Recently, an analogous dependence was found and explained, in [7]
for the dissipative Fermi map. Another approach to determine f,,
was provided in [8, 9]. There the authors relate the average tife-
time to Lyapunov exponents and other characteristics.

Another example where strange attractors appear in two-dimen-
sional maps is the well-known Henon map [10]:

S el (3)
Un+1 =Bx,.

One of the main differences between (1) and (3) consists in the
fact, that (3) is considered on the whole (x, y)-plane. Therefore the
instability of trajectories in the absence of dissipation (B=1) vields
infinitely extended motions (the trajectories run to infinity), while

for the system (1) just the boundedness of the phase volume together
with the presence of local instabilities lead to global Hamiltonian
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chaqs. In th_e paper [10] the strange attractor was numerically in-
vestigated in the case of strong dissipation (A4=1.4 .Ba{]S}
Amnng other things it was shown that this attracting ‘sei haé 1
comlphrizitle]d,ﬂ(jantur—like structure. . c

n 1ere was discussed the question to what e -
nomenon of transient chaos found ?n the nonlinear E;:‘;t{tflf ?shea
t:,:fplcai one. As an example the author considered the Henon ma
(3) 1where the variables were taken modulo 2. For small #=1—§
he did not find a degeneration of the chaotic motion in 1 i)eriodic
one. As a conclusion it was stated, that for the Henon map on a to-
rus the transition from Hamiltonian to dissipative chaos goes conti-
nuously wi.th{)ut transient chaos (and periodic regime). However
the conclusion made in that paper is incorrect and is caused as i{
seems to us, by a wrong way to confine the system onto the!iﬂrus
As_a result of the truncation of the map used in f11] it will,
s[tlrgic]:t}]y speaking, not be Hamiltonian even for B=1 (for details sene:

In the present paper we investigate the problem of transient

chaos for the Henon map on the torus in m i
: ore detail.
we consider the following modified map: ail. Instead of (3)

Xn 4 =yn+D_"Ax£ oo

yn-.l—l:erx {4]
and at the same time the truncated system on the torus:

X1 =[Ya+ D—Ax,],

Yni1 =[Bxa]. (4%)

He:;e the brackets | | denote a restriction of (4) onto a torus of pe-
;10 fh M{)rt? exactly, syrttem (4) is obtained from (4) by restric-
Ing the variables (x, y) into —2<x, y<2 in such a way that

: 2
if 2<y.+D—Ax’ <86, then [ya+D—Ax)]=y.+D—Ax’—4;

then [y.+ D—Ax:‘f] = lYn+ D-—Ax;f +4;

and so on.

il —6<yn+D—Ax < —2

In the whole paper we fix 4=1.
First we consider (4) for B=D=1. Th i

; , . b=D=1. The points (—1,1), (I, —1

form an orbit of period 2 which is surrounded by small sgab{le |

ons. Fig. I gives an impression of the shape and position of e

these
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Fig. 1. System (4), A=B=D=1. The initial point (1, —0.96) is iterated up to the
moment when it leaves the square —2<ux, y<2.

stable islands. To get this figure, system (4) was taken for
A=B=D=1 and the initial points (1, —0.96) was iterated up to the
moment when it leaves the square —2<lx,y<<2 (i. e. it is shown
part of one trajectory). Fig. 2 shows two trajectories (more exactly,
those parts of the trajectories which are located inside the upper
stable region). The outer trajectory is close to the separatrix of the
resonances of the [4-harmonics (7 pieses are seen, the other 7 pie-
ses belong to the lower part). Here the initial point (1, —0.955)
was iterated 1000 times. The inner trajectory is obtained from
(1, —0.98) by 1000 iterations. To get these pictures it does not mat-
ter whether we take (4) or (4’) (A=B=D=1).

For system (4’) we observe together with the stable islands also
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Flt'g. 2. ?‘:ystem (4), A=B=D=1; parts of two trajectories inside the upper stable re-

gion (cl. Fig. 1). Outer rrajectory is close to the separatrix of resonances of 14-har-

monics. Initial point (1, —0.955), 1000 iterations. Inner trajectory: initial point
(1, —0.98), 1000 iterations. '

a stochastic component. It is formed by trajectories with those initi-
%al points from the square —2<x, y<<? which lead to divergent tra-
jectories in system (4). Fig. 3 shows such a stochastic component.
There is seen one trajectory, more exactly, 10000 iterates of the po-
int (1, —0.96) (again A=B=D=1). The first iterates lie near the
separatrix (ci. Fig. 1) and then they wander erratically over the
whole square (torus). In case of system (4) this trajectory would
escape to infinity. '

The shape and position of the stable regions depend on D in an
interesting way. Ii D decreases from D=1, they first shrink, then
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Fig. 3. System (4’), A=B=D=1. Stochastic component formed by 10000 iterations
of the initial point (1, —0.96).

blow up, come nearer and nearer and finally fuse at (0,0). Fi-

gures 4 and 5 give impression of these features. Fig. 4 shows 10000

points of one trajectory of system (4’) for A=B=1, D=0.6. The

initial point is (0.1,0.1). The two stable islands are seen very well.

Fig. 5 contains two trajectories of (4’) for A=B=1, D=0.2. The

stable trajectory (the two ellipse-like figures inside the stable regi-

ons) is obtained from the initial point (0.2, —0.2) by 1000 iterati-

ons. The other trajectory is an unstable one forming a stochastic
component. It is formed by 2000 iterations starting from (0.1,0.1).

In accordance with previous observations around the boundary

| of the stable regions there are itransient zones. Now we put in a

i small dissipation. Then in system (4’) the stochastic component is
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Fig. 4. System (4'), A=B=1, D=0.6. Stable islands, initial point (0.1,0.1), 10000

iterations.

destroyed and in dependence on D different types of periodic orbits
appear. Let us give some examples. First consider D=1. For small
dissipation one finds an attracting 4-orbit which undergoes the who-
le period-doubling scenario with decreasing B (i. e. increasing dissi-
pation). Finally, at B~0.825 a strange attractor with characteristic
Lyapunov exponent 0.038 appears. This strange attractor consists of
4 small pieses. With increasing dissipation it develops into a large
attractor. Fig. 6 shows its approximate shape for A=D=1, B=0.8.
There are seen 10000 iterates of the initial point (0.1,0.1). Thus, al-
so for system (4’) the same transition as in [2] from Hamiltonian
to dissipative chaos is observed, namely: chaotic motion (stochastic
component) — periodic regime — strange attractor.
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Fig. 5. System (4’), A=B=1, D=02. Stable islan i
, ; e , D=02 ds and chaotic «seas. Inner stabl
trajectory obtained from (0.2, —-[_12] by 1000 iterations. Initial point (0.1, 0.1) give:
the stochastic component (2000 iterations).

Let us add the following remark. Since system (4) (or (4'))
has a 2—0rbi1 for B=1, one would expect, that for small dissipation
the periodic regime also starts with a 2-orbit (instead of the 4-or-
bit). However, the analysis of the stability of the 2-orbit in system
(4) .shnws, that we are in the transient case from stable to unstable
mntlo_n. More exactly, the eigenvalues of the linearized map at the
]2~u{r]b[ttare b0+th equ..al to —1. Thus, already the weakest dissipation
f{a}rgit ;::-5 zgselrmv:tfdzate bifurcation of this 2-orbit and the stable

Next we consider D< 1. For small dissipation a 2-orbit appears.
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Fig. 6. System (4’), A=D=1, B=0.8. There are shown 10000 iterates of (0.1,0.1).

But then the behaviour under increasing dissipation depends essenti-

ally on D. Let us give some examples:
D =0.95: period doubling to a strange attractor at B=~0.7 with

Lyapunov exponent 0.086;

D~0.8...09: only one period-doubling, then again a 2-orbit ap-
pears;

D~06..0.7: only the 2-orbit was observed;

D~0.1...0.5: the 2-orbit degenerates with increasing dissipation in-

to a fixed point.
It seems worthwhile to mention the following observation. If

system (4’) becomes dissipative, there are two different ways how
points approach the periodic orbits, so to say two diiferent types of
points. The points of the first type reach the orbits quite rapidly.

11
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These are just those points of the square —2<x,y<<2 which lie in
the domain of attraction of the 4-orbit in system (4). The points of
the second type approach the periodic orbits very slowly. They cor-
-respond to divergent (to iniinity) points from the square for system
(4). Just these points give rise to transient chaos.

Finally we turn to one of the main results of the paper. Our aim
is to verify relation (2) for system (4”). The results for different D
and e=1—B8 are contained in Table. 1. The numbers inside the Tab-
le denote the product f.,-S-¢. The last row contains the means over

the corresponding column.

. 1
The Values for the Point f,-S-¢ {cf.
are given in Dependence on D and e.

D 0.01 0.02 0.05
1.0 1.01 1.02 1.12

0.9 1.06 1.41 1.33

0.8 0.47 0.72 1.09

0.7 0.99 0.91 l.46

0.6 .11 1.08 1.56

0.5 0.92 [.34 1.67

0.4 0.86 1.26 1.81

0.3 1.04 1.06 1.76

0.2 0.75 0.95 1.40

0.1 0.92 0.88 1.22
0.91 1.06 I.44

Let us explain a little bit more in detail how S and ., were de-
termined. As already mentioned, in [2] S was taken to be the total
area of all stable regions of the phase space in absence of dissipati-
on. Here we consider S in dependence on ¢ and use for S the area
of the set of non-divergent points of (4) contained in —2<x, y<<2.
To do this, 40000 initial points were iterated and S is proportional
to the fraction of points which did not escape to infinity. This set of
non-divergent points has a complicated structure. Fig. 7 shows a
small part of this set, namely that contained in 0.4<<x<0.8;
— 1.2y 0.8

As to ., there are no direct methods to determine the lifetime of
chaos. So we used the following heuristic procedure. Take an initial
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Fig. 7. System (4), A=D=1, B=0.825. Set ol non-divergent points contained in
e ] 0.4<x<0.8; —1.2<y<<—0.8.

oint which vields transient chaos. After each iteration it is me‘veed
i'hethﬁ*' or not it lies inside the phase square —QTﬁx,yg If(liﬂ[j
whlth-er or not it is necessary to truncate the cu-::-rdmatez'j},
t:;'nwprsu in succession it was not necessary_to truncate, we dSupr?EZ
that the point had reached the periodic regime [W]ils c.fspt}uer{—:ﬁlL ;;mm
[ ' int was taken to b ] -
stable islands). And then {., for this poin 4 : |
;E of iterations up to this 100 times oi nnn-truncatllun. cht. get HE
i ‘e ave d over 80 initial points on
value {. for relation (2) we average | i e
' ' ; »ared that this heuristic me
diagonal x=y of the square. It appear e e
wurgks quite well for dissipations which are not too bm?tl. fm(‘j;:;rj;;
weak dissipations one should use the Lyapunov exponent to dec
; = gy e
n the point comes into the pDI‘IDdIC. regim ,.
whEIn CUI‘IE]USiUﬂ one can say that as in ‘[*2]' ::11:3,0 for our model ‘(4i }]
relation (2) is well satisfied for weak dissipations. Fprtl?errmon,‘ I
aécordance with [2] the product #.,-S-& ‘increases ‘['Elpid|_}'.if (Jr.e:itr}_
proaches some critical dissipation e... It is a very interesting ques
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on to determine the dependence of f. in the neighbourhood of criti-
cal values of the dissipation. For some models this was done in
[6, 13] and further papers.

The authors are grateiul to Proi. B.V. Chirikov for stimulating
discussions and critical comments and to V.V. Vecheslavov for his
help in performing some calculations.
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