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Abatrach

The radial integrals for transitions of &P -electron to
the excited states in the Tl, Pb and Bi atoms have been found
by numerical integration of the Dirac equation with an effec~
tive potential. The radial integrals for excitation of &5 -
andSd —electrons from the closed subshells have been obtained
from analysis of the available experimental data on the osacil=
lator gtrengths in T1l, Hg, Au and polarizability of Hg. Using
the obtained radial integrals we determine the polarizabilities
of the T1, Pb, Bi atoms by & gimple method similar in essence
to the Sternheimer method.

1. Introduction

caloulation of the oscillator strengths for different tran-
gitions in the atoms of thallium and lead was the subject of
numerous theoretical works (see, e.g..[1_%]J. Qur interest to
this matter is due to calculation of the effects of tha'parity
violation and enhancement of an electrical dipole moment of an
electron in the atoms of Tl, Fb and Bi which depend on the va-
Jues of the radial integrals[4'?]_ Although there are extensi-
ve experimental and theoretical data on transitions of a valent
gp-electron in T1, the data on similar transitions in Pb are
incomplete and contradictory; as to Bi, the lifetimes of some
levela are known only.

The main purpose of this work is not pure theoretical cal-
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culation of the radial interrals but obtaining of the most re-
‘liable values of these quaniities in the atoms of T1, Pb and
Bi, Therefore, we correct onr calculations at each stage us:’n}

the known experimental datn on oscillator strengtha. Although

the palculatinns were made by us in connection with the parity

violation problem in atoms, the obtained results are, in our
opinion, of independent inferest.
The radial integrals were calculated with the wave func-

tions obtained by numerical integration of the Dirac equation

with an effective potential. Comparison with the avallable ex-

perimental data on the aécillator strengthe in Tl showed that

. found by us integrals 4 and Z ‘fexceed the experimental

: €p-¥5
values by #-15%.

In lead and bismuth the calculated radial integrals were
corrected in qccnrdance with the available experimental data
on thallium, Using these radial integrals, we calculated sev-
eral oscillator strengths in Pb and Bi. Agreement with exper-
imental data from the wnrka[10'1%]ia. in our opinion, quite
éatisfactﬂrw.

The radiai iﬁtegr&la connected with the excitationg

lmEGSAElectrons from the closed subshells are of a

Epedial interest, since, in our opinion, the discrepancy in
estimate of the effects of the space and time parity violation
between the wn:ka[4*6}and[?_9]is due mainly to the difference
in the magnitudes of the used radial integrals éT‘fﬁ + These
‘_integrala were obtained by us for Au, Hg and T1 from the an-
alysis of available experimental data and extrapolated to FPb
and Bi,

In the present paper we calculated also the polarizabili-

ties of the Tl, Pb and Bi atoms by using a simple method sim-

——— e ——

ilar in essence to the Sternheimer mathod[14].

o Calculation of the single-electron wave functions.
The technique of calculation of polarizability in
many-electron atoms

The Dirac spinor of an electron with the total angular mo-

mentum j and orbital angular momentum f' in the central poten-

tial looks as follows

Ju Ly, ) | (1)
Vjif;’f ( i £, Mgy 1

Here ﬂ, f.‘e

tions the radial integral determining an amplitude of EIl-trensi-

sl
'is a spherical npinur.l==jv - . In these nota-

tion may be written in the following way .
_ () +£0F ?]zJZ

Yty sy f[ 9,200 Gy (0 @ 0 (2)

In this paper all the values of the radial integ:alﬂ are given

in the unite of Bohr radius.
We find the radiasl wave functions f and 1) by numeric-

al integration of tha Dirac equation with the two-parametric

effective potential proposed in{ﬁ%{z

Sot B P: (3)
U= "% iptra) 271 |

j? is the charge of a nucleus, We have chosen the following

values of parameters: :
H,,j = /6037 He = 15044 Hpg =#.045 H,-=12.049

= =/ 538 al =4.401g, (4)
(,{Hj=_f,€3i£?3 ddT{ 1. 5504, 6{ CRENS

O 18 the Bohr radius. Obtained in this pntentiﬁl values of

the mean energies and the fine splitting constants of 6p ~el=-

1) The sign of the radial functions was chosen so that j)ﬁ at
£+0,
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cctrons as well as the enerpies of NS {HE?’) -electrons agree with
experiment with an accuracy not worse than 5%. Pitting the en-
ergies of valent electrons we obtain a true behavior of the wa-
ve functions at long distances, whereas the fine splitting
serves ‘as the criterion of their correct behavior at short dis-
tances., Good agreement between the experimental and calculated
in["i} constants of the hyperfine structure of the levels of
ground configurations in T1, Pb and Bi is an additional test
for the found wave functions.

In further calculations of the osclllator gtrengths and
polarizabilities of many-electron atoms it is convenient to
use the secondary quantization representation. Let us introdu==
ce the necessary notations: @, is the destruction operator for
Gﬁ& electron with the projection of the total angular momentum
on the axisZ )fﬂ . Cﬂ ir the destruction operator for Gf';h-
electron, Ef,!'ﬂ for hs =-electron, Jc},;ﬂ for ﬂﬂfh -electron, h”pﬂ
for Hd'% -electron. The operators of the electrical dipole mo~-

ment in this representation have the following form
: S & _at -

D8, ~1) = 3 Ly (- Tng b, + 246, ) + he

2, (6p2ns) = 1,,(@0 €y + @€y ) he

nd =il 4 .
2, (ep, nd;)*-g tass (8 hy T, f -y )th.e (5)

i - o . ” +
D, (6pmnd, ) =5 Zuss (<€ Py~ 3G g P8 €4 %, P

J"-I. *

+

¥

ot * * p
D, (67, = ndy,) = # Lyas (6, by, WE Gy by FEES, b, (25 R s)rhe

4
Py %

where the values 2; are the corresponding radial integrals.
We use the ” scheme since the radial integrals for é‘ﬁ& - and

6‘,""3.,2 ~electrons differ considerably.

) rh, ¢,
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Come now to calculation of the polarizability. Let us con-
gider the contribution of the excitations of a valent 6/f, -el-
ectron from the configuration 6',9‘ to the configuration eprns
(for example, in lead this is tranﬁitinn from SPL to 6pns ).let
I.> be the wave function of the ground state. Then. the contri-
bution to the polarizability from the indicated excitations can
be written as follows (all energies are expressed in Rydbergs):
! {E]= "Ec.?ﬂj Z _Z: '{Ena FE:JG.' 'z‘dj‘f{}{{_érﬁ*ﬁ 9l 4 ﬁ,} <”*ﬂ ‘ai'(é ,-”5"?'}1.5) I t.' j:'E ?
WG (EuyE)* —£%

(6)

+hepe J° is the angular momentum of the ground state, and the

-
index J numerates the levels of the configuration €éF #s5. 1T

now we neglect the gplitting of the levels jngide the configu-

~ration é“f"hs end teke into account the completeness of the set

fﬂj) for the operator Z)gr‘f"%{’“-‘)s then (6) is transformed in
such & way:
&a E-£) L%z DE i 4,
S (e) = %—&Z (." ]i’ ZJ:DE (6&_’”3),":’:2>
ey (E.~L )" —£°
= -{{.- a-i (En—Ej<, J;zl‘i’);zfﬁﬂf;rn_g}[f, 3;_{2
e (B -E ) -2

(7)

P

: )
where :Di—_-b,"'ﬁ;'fﬁ:, E, is some effective energy for the giv-

en configuration 2). Since D* is the scalar, the projection gz

») In each particular caBeg, it is easy to understand to what

is equal the quantity .E,1I , taking into account that for the eX-

cited statés in T1, Fb and Bi“ ~coupling is realized with a

gc;l::ui accuracy. For exampls, for the excitation under consider-

ation in lead En?ff‘éﬁ}ﬂ-ﬂ)' . Note also that the error arizing

when passing from formula (6) to (7) at small £ does mnot exceed

geveral percents.
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in the last formula may be chosen arbitrarily.

The calculation of the contributions of the excitations of
valent electrons §fy»ns , 6,*1,*{1’;‘1_- nd , as well as the excita-
tions of electrons from the closed subshells SS‘rn;uhgi and
5d > hﬁ*’ah is reduced just analogously to the calculation of the
mean values of the corresponding operators Efzover the ground
state. It is easy to obtain expressions for the values -‘szrnm
(5). Excluding the creation and destruction operatorsef all

electrons except the valent ones we get

2 1
D (GF#IM) i 3“L Zﬁ“{ é!’ é‘f

D*(6Pgns) = § Vs Culn

’Dl(g-p&*“d’%i}= :Ri- tf—tj.il 6 GJH

£

2 +
D(6p,»nd) = F 25 Cp Cp (8)

D (65 »6p) = 5V (gfg;+§f;)

The summation should be carried out over the repeating intiex/pf ”
In these formulae we neglected the fine splitting of o ~elect-
rons, i.e. we put Z*?,B..%: 2',,13_,,-- . For trensitions from the closed
subshells the difference between the radial integrals for S‘P‘Fﬁ. -
and 5&1 -electrons is neglected also. The equality of these in-
tegrals follows from the analysis of experimental data on the
ogscillator strengthe and & t® numerical calculations (see be=-
low). -'?'I!E do not consider transitions from the closed subshells
to the higher states than é'p -~gtates, since, as the estimates
ghow, their contribution to the polarizability is very small.
The further calculation of polarizabilities depend on a

concrete form of the wave functions of the ground stale and may

#—

be carried out fairly simply by the formulae (7) and (8).
Deriving the formula (7) we neglected the confipuration
mixing. Validity of this approximation is discussed in Appen -
dix in detail.
In conclusion of this section we want to note that if to

agsume that all the electrons move in the same effective po~-

ten .
= which

. s [14
enter the polarizability can be reduced, as it was done 4.:1[ ],

tential then one-electron sums of the type

However, there are mno phyaical grounds to think that by means
of the same effectlve potential it is possible ito describe cor-
rectly not only external electrone but also elecirons from the
closed 65 and, all the more, 54 gubshells. In particular,
the potential (3), (4) overestimates considerably the energies
and especially the radial integrals for 6 S - and 5d —electrons.
For this reason, we shall caleculate manifestly the sums enter-
ing the polarizability , uaiﬁg, if possible, the available ex-
perimental data.

3, Radial integrals and polarizabilities
for mercury and thallium

The excitations of 65 - and 5o -electrons give a signifi-
cant contribution to the polarizgability of Tl. Ae has been not-
ed at the end of the preceding section the numerical calculati-
on overestimates considerably the corresponding radial integ-
rals. At the same time, if there are quite reliable experimen-
tal data on the transition 6§-€p, then for the transition Sd»6p
guch data afe abgent., For this reason, we shall find the radi-
al Iintagral -‘i'u.f_-;GF ,. based on the known value of the polariza-
hilif},r for Hg .wi{:h the subseguent extrapolation of the obtained

value to Tl.
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According taf1?] the rofraction index of Hg-vapour under
normal conditions and the 5593,3 wavelength (i.e. & = 0.1546 Ry)
is egqual to 1,000933. Whence o (0.1546) = 37.3 62',‘-5 . The os-
cillator strengths corresponding to two transitions ¢5--ep are
known from experiment: If( S )=0024720 0002 ,Ey, ~E, = =0 3594,
(IS P)=41%2007, Egp, = Eigjﬁéﬂzﬂ’ [” =1
The contribution to polarizability from 5d»6p transitions is

calculated by means of formulae (7) esnd (8)., As a result,

we get

_i(‘iﬂ&) F(Jsﬂ ) S .ju 5',f(E.$n"5F ESJ”
nl{(f-) ‘;‘-':Z'ﬂ [(E e ]_,_E,g (E‘F —E_: ) B (Eygﬁp f;ﬂ,} —52. (9)

As has been alresady noted, the contribution of excitations of

6S - and Sd-electrons to the states higher than 6Ff is very
emall, therefore, it is neglected, From formula {9), taking into
account that gww =Esqe = 0.794[%%]we find 2 = 1.44 (the
sign is determined from the numerical calculation).

Computing the configuration 636P in a standard way end
using the known oscillator strengths we find the radiel integ-
rals: 7, = ~1.80%0,04; Lg 3 = =1,98£0.07. In the Tollowing
we shall not take account of a relatively small difference bet-
ween these integraels, i.ec. we take 'Z‘.JEZ%?_E %~ =1.9, Note that
the computetion with the potential (3), (4) gives the following
values for these quantities: Z@_{”‘ Iy 4= les= =342, i.e. over-
estimates them about 1.7 times.

Now we pass to the determination of the radial integral ?;j
in T1 which is comnected with excitations £$*6p =65 Fj-‘* . Numexr-
ical caleulation gives 2,,% 23~ Lgg = =3.0. We aspume that
the overestimating of this value in comparison to the real one

is the same as in Hg: then Zﬂ s =3,0/1.7 = =1.75. Now we ve-

rify whether this value of the radial integral is in a good

5
arreement with available experimental date. The wave Tunctions
of the states of th;a configurations g5 €p* in the intermediate
coupling approximation are presented in the wc-rk[q]. The tran-
sitions from the ground state to eix levels of this configura-
tion are allowed. By means of the functions i‘rnm[.q'] at zﬁ =
= - 1.75 we get the following oscillator strengths for five of

them lying in a continuous spectrum:
£ .. =0.0422 15 = 0429 £, 10,20079 2;,=0,242

2383 = i
f = 008107%=0.257 Flip= Q435 V= 0413
1489 s

Fyooy ~HOIBLE FGNAEE
The wavelengths in vacuum given as the indices for oscillator
strengths are presented in }? . Calculated values are in a good
agreement with experimental data .frmn[m]:
Fi610= 039 Frooy =0 0011

Note that the results obtained by us differ considerably from
experimental data of the wnrk[gzl.

A very reliable test of the correctness of the values 2'£J=
?‘3 = 2‘5.5 = -1.75 is calculation of the oscillator strengths of
the transitions to the state j 2 )of the configuration csép*
lying in the discrete spectrum. As was noted in the paper&{23 24],
because of the nearness of energies (AE = 77 om 1} this state.
mixes strongly by the Coulomb interaction with the levelfﬁi't-fﬁ),

i.e.

197, > ={1-p2 40, > + p 108> o
| 05y=[1-p* |10s> - p 176, >

We determine an absolute value of the mixing coafficientﬁ by
using the known hyperfine structure of the levels ].f ﬂs)am—l f’,)

Since the probability demsity of &S -electron on the nucleus

is by two order of magnitude higher than that of f0S -electron,

the hyperfine structure of both the levels ie determined by
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a contribution of the state ]gsépfif*}with a non-paired 63 -elect=-
ron. Taking advantage of thé experimental values of the hyper-
fine splitting constants :E‘rnm[za']we get

- =0, 285
4 hpﬂ *Hiﬁ g (11}

from here ﬁ = +0.473} e put ﬁ = +0.47, since at a negative
£ 81l the calculated oscillator strengths disagree drastical-
ly with experiment. To celculate the oscillator strengths i‘or
the transitions from states 6'5"6@1 and 6 §* é'ﬂh to 105 and #ﬁfﬁ,
besides 2, it is necessary to know the radial integrals £p=Z0S,
As we shall see below they are ! by ™ 0.255; §q3‘= 0.245.
Taking advantage of an explicit form of thej wave function f,‘;'
frnm[ﬂ we calculate the oscillator atrengths of interest by :
us. Their values are given in Table 1. As seen from thie Table
the calculation is in a good agreement with experiment EEE"?S].
(Since in[27*2%]only the relative oscillator strengths are
measured, we got their absolute values, based on the data from
[ET] i

A value of the radial integral fﬁ- (trensition $</=£p) we
gshall get by the extrapolation from Hg assuming that it dec-
reases the same times as 2’65 y leee Yoy = 1.44 ::: 2w 1,33,
The validity of such an extrapolatinﬁ is based on the small-
ness of the variation of the principal quantum numbers from Hg
to T1 and the numerical calculations.

There are extensive experimental data concerning the tran-

3) Using the wave functions (10) it is possible to calculate

not only the ratio of conslants ﬂ;’;;i and ﬁ.{“ but also their
.f,; :

absolute values which agree well with experiment, One can ob-
the

tain a correct value' of isotope shifts of .ff.?}. and {'P, levels as
W311+

11
pitions of a valent electron in T1[25"2?]. The radial integ-
rals calculated by us with the help of the potential (3,4)
as well as their values obtained from the data on tﬁa oscil=-
lator strengths are presented in Table 2. As aéen from this
Table our calculation overestimates the values of the radial.
integrals, however, for the main integrals the overestimating
is not higher than 15%. The overestimating regularity allows
one to refine the calculated valuee of the radial integrals
for Pb and Bi, Extrapolating the overestimating we can find

alse correct values of the integrals for {p-10s transition:

B 3 e 0344 _
tﬂ;j 1,43 0.25%5 ziﬂ,a 4,28 =045

Tow we calculate the polarizability of Tl. It is made ve-

ry simply using formulae (7) and (8). The wave function of the
' !

ground state has a form [i” 26{1[%> where [ % > ie the wave fun-

ction of the closed subshells. Let us find, for example, the

"contribution of excitations Fa’”s'@ ——Idgé'Fz

oL ~LL|DHsd>epli>=%2 ,;(5*15 {sg +cc)5 [6>=42 2%, (12)

In just the same manner we calculate all the remaining contri-
butions and find the following expression for «£(€)

) £ Zau Ji + 10 Uiy
Lo (€)=9Q {Z ns 9 a,,,’:én;*’ﬂ n ﬂﬂ a8 2] (13)

where «E:n:"é:.“E; d )q,,:(’-f'}_-i;) 3 . Note that in each term the

factor A is multiplied by the quantity which is in fact the

sum of the oscillator Etrengtha of transitions to & given con-
figuration divided by the mean frequency squared (E ZTE"_L)

The numerical values of these quantities and the frequencies &y

in Rydbergs are given in Table 3. By means of these values
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1t is not difficult to compute the polarizability at eny fre-

quency. For example,

Ly (0) =480, - (14)

4. Radial integrals and polarizabilities of
lead and bismuth

Experimental data from which it is possible to determine
the radial integrals corresponding to the transitions from the
closed subshells in Pb and Bi are unknown. Therefore, we deter-
mine these integrals with the help of the extrapolation from Tl
and Hg based on the numer:l.aﬁl calculation, In this case, In Fb
Z-gs = _1'6;25.;‘: 122; in Bl Tge= -1.5;Zﬁ£= 1.1« In the preced-
ing section it has been shown that the accuracy of such an ex=-
tmpnlat'f::fgﬁ"'ﬁgis' not worse than 5% when passing from Hg to Tl.
Note that in the opposite case, i.e., when passing from Tl and
Hg to Au, we getl Zgg = -2,1, that agrees with expez*:‘::ment[zaj
very well:%, = ~2,24% 0,12;7%; 5 = -2.22% 0.08.

The radial integrals for the excitations 6P+7S, &S in Fb

have been chosen in. such a way to get correct values of the os-

cillator strengths. These integrals are presented in Table 4.
All the remaining radial integrals given in this Table have
been found by numerical calculation in the potential (3), (4)

and we introduced, in each transition, the corresponding cors-

rection on overestimating which was taken from Tl (see Table 2).

For transitions LP- 7S, 88 the wvalues found in this way cons-
PR, | = . . . -

situte Loy g = 1.85; Z%__ﬁn 0.57; ¢, v = 239 Z‘%ﬁ = 0.57.
Some distinction of these values from the true ones (see Tab-
le 4) is probably due to the mixing of 6P 7S and &P 83 confi-
gurations.

Using the radial integrals we can calculate the oscilla-

#7_
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tor strengthe for different transitions and compare them with
experiment. Since the number of oscillator strengths is larger
tlhan the number of independent radial integrsls, such e compari-
gon is reasonsble even for the traneitions 6P~ 7S , §S » Where
the radial integrsls were chosen in accordance with the experi-
mental values of oscillator sirengihs. The calculatlon of the os-
eillator strengths in Pb is eumplicatad due to the strong mixing
between the excited configurations. Therefore, we congider only
those transitions which are influenced by this mixing slighily.
Moreover, we shall verify two approximate sum rules. :

We confine ourselves to the consideration of the transitions
to the configurations §p 7S and 6F;, 6/ (for transitions to
Gﬁ’rlé’a’ the oscillator strengths have not been measured).Compari-
son of the experimental and calculated values of the energles
and t?'-factnrs shows that the levels {‘6,‘_:,} ?é%and { 6Py, %Js are

the pure gstates in practice, and the correct wave function
'y

(6f,,7s), has the form (6f,7S), = 0,047 (67, #s), + The wave func-

tiong of the configuration E“P:‘ can be found, for example, in[‘t?f.
The oscillator strengths calculated by these functions are pre-
sented in Table 5. These values are in full accordance with the
experimental ones [ 0] given in the mentioned Table.

The remaining states of the configurations under study form
two groups of the levels which mix strongly {(~20 + 40%) because
of the nearness of energles: G’P,&?s{*ﬂ!], 6r,8S ['S,F_}I) end 6‘{'&26’5{;&({2}%)
with the angular momentum J=J1 , as well as ¢f, ?5(3&‘3)3 Pngdh( 3,{-'2 }
and éF'héa’%%;}with J=.2 . The conventional LS notations in paren-
theses correspond to those accepted inEEG_L In this case it is com=
paratively easy to verify only the sum rules fn_r the oscillator
strengths which are based on thet these levels posasess nearly equal

energles.There are experimentel date necessaryfor sucha verification aaly
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for the transitions S’,P"a[];:{ J»> |3= 1 and ep*(f)— [v= 20 DJ ]
They are presented in Table 6. Comparison with the calculated
values of the oacillator atrengths given in the same Table
‘showe that although, as was to be expected, the calculation
for each transition doees not agree with experiment, the agree-
.ment of the sums of experimental and computed values is quite
satisfactory.

The radial integrals for exciting the §P-electron in Bi
have been found by numefical calculation in the potential (3),
(4). For each transition we have introduced the correction on
overestimating which equals that for lead. The reeulﬁing va-
lues of the radial integrals are given in Table 4, To verify
these quantities we calculate the lifetimes of those levels
for ﬁhieh there are the corresponding experimental data.

Calculation of the configuration &p” 78 in the intermedi-
ate coupling scheme does not constitute any difficulty (see,
fqr example,[zgland preprint of the paper[4lj. The necessary

wave functions in thejj scheme have the form

|, . =o0.900(st1), +0064 (st %), ~0156(s5 %),

4P, %, = 0 984( 513 1), +0.L08(sE XA 0085 (s 3 3), (15)
| “p%ﬁ} =014y (st £1)), +¢?9?ﬁ(52i@) 0 159(s2 %),

|1 = 0875 § 1)y, ¢ 02430533}y,

The expreasion {Sj.i ij ))J denotes the normalized wave funec-
tion of one § and two p (with angular momenta J1 and f.z Y ol
ectrons, the angular momentum of a pair of © -electrons is
equal to f , and the total angular momentum ~ J , The necessa-
ry states of the configurations G,’} Saland Sﬁ« ?d’are close to the
pure “ ones, i.e. ﬂ%lf )y i ( J}i. As to the
mixing between the configurations, the state / ﬁ, >1s practic-

ally pure, and the remaining states QFZ?S gnﬁ ep’a;ymix sig-

_ b
nificantly. Analysis of the known from experiment ?-—fﬁntnrﬂ'
of the levels of the configuration QFEJSLBD] 4) as well as the
estimates of the Coulomb integrals based on numerical calcula-

tion lead to the following wave functions

e =10 |

| a;)ﬂy‘,-a 96| 0y, 2, * 04257, 3 =0.300] 1),
148, =0.992|"p, > -0125] "9’>J

| 1F> =0,§03] *F ) +0.300[°9, —05151%2y,),
| )5‘1,““911 25, >ﬂ,+6’13-3f Fu;,,_)

2
1B, =0.9001's, 5 -0.433]" ,A} +0, 313 .2}%}"#,
It should be noted, that not all the coefficients in the wave

(16)

functions (16) are reliable. Errors can arise due to inexact
measurements of ? -factors, inaccuracy in determining the wave
functione (15) as well as the bad accuracy of the calculation
of the Coulomb integrals. However, the lifetimes calculated by
using formulae (16) are in a good agreement with experiment.
This cirmmétance allows one to think that the errora in these
wave functions are not too large. -

Taking advantage of the wave functions for the configura=
tion B P° (see, e.g.,[16]J it is poesible to calculate the os-
ecillator strengths for the transitions from the states (16) to
the levels 6/ . Their values are given in Table 7. In the lat-
ter the oscillator strengtha are also presented for the tran-
sitions to Fﬁ;;rphanﬂ 'éf;:?@lwhiuh are pract.icallz.; the pure J J stat-
es. The corresponding radial integrals are: Z?F_?s = -6,43 %ﬂ"’
4) We cannnt take adtantage of the known f -factore of the

levels ! >5." and ' ,2}_?> gince even a small mixing beiween
different | J states of the conﬂguratiuns'p 64/which we do not

take into account may influence these f ~factors essentially.
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e Tals 3§F*34= -3.T7. Calculnted lifetimes for the st?tea (16)
are. given in Teble 7 too. These values are in a good agreement
with the experimental ﬂ1_13]. T+ should be noted that although
the oscillator strengths for the transitions to the states Qpﬂﬂﬁ
ere relatively large, a contribution of these transitions to

the lifetimes does not exceed 3% because of the smallness of
the frequencies.

Using the found radial integrals we determine now the po-
larizabilities of the atoms of Pb and Bi. It is quite simply,
Juat the same as in Tl, to calculate the contributlons of all
the types of excitatione to the polarizabllities by means of
the formulae (7) and (8) eand the wave functione of the ground
Eﬂatéa of these atoms in the secondary quantization representa-
tion (593[16} }« The sume of the oscillator strengths for tran-
sitions to a given configuration divided by the mean frequency
squared (i.e. E"} é, fas ) are given in Table 8 for Pb and in Tab-
le 9 for Bi, The polarizabilities are eipreaaé%ﬁﬁfﬁghese valu-

eg as follows (ef. (13)):
L(2) =992 2 A, (&) (#2 Fud) (1)
(4]

In the same Tables the corresponding values of £ are present-
ed, Energies E;'s and E-i‘a" were obtained by the extrapolatlpn
frem Hg and T1 since the experimental data for their direct de-
termination are insufficient. From Tables 8 and 9 it is easy
to cal#ulate the polarizabilities at any frequency. For examp-

le, at £=0 we get
o) =97a’ -53a’ (18)
'{'Fé” a adE:(a) 3a,
Thus, the polarizabilities of thallium, lead and bismuth are

nearly the same and they are higher considerably than the pola-

\
]
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rizability of Hg ( < yfﬂj:—_ 34 ). A sharp increase of the
polarizability when passing from Hg to Tl is due to the fact
that in T1 the additional contribution arises from the £p -
electron. In the further motion from Tl to Fb and Bi the pola-
rizability remains to be approximately constant, since al-
though the number of external electrons increases, the contri-
bution of & particular electron cute down. The polarizabilitles
of Tl, Pb and Bi at £=¢ have been previously calculated in
[2']. The results of this work: Ly, (0) = 43,24 i, (0) = 42.44;
aiﬂ.' {E) = 39,5 5(33 , differ from ours slightly enough, however,
according tc[BTI, the polarizability decreases when passing
from Hg to T1, Pb and Bi (111[31_],5'Jir (0)= 66.1a3 , that is two

times greater than the experimental value).
4, Conclusion

As has been noted in Introduction, our interest in the sub-
ject of this paper has arisen in connection with the calcula-
tion of the parity violation effects in the atoms of Tl, Pb and
Bi, Therefore, we summarize the results concerning the calcu-
lation of these effects. Their magnitude depend heavily on the
radial integrals and the electron wave functions at zero. iAs
has been shown in this paper, the available experimental data
for all three elements are correctly reproduced with wvalues of
the radial integrals for excitations 6f »#s used in the papers
[4"6] . As to the radial integral for the excitations €S =ép ,
its value in Au, Hg and Tl is found from the experimental data
very reliably and this integral is a monotonic function Z .,
Therefore, we think that the accuracy of our extrapolation to
Pb and Bi (see Table 10) is not worse than 5 + 10%.

Begides the fitting of a fine splitting, we have taated




18
a behavior of the wave funotions of 6P -electrons in zero at
parameters (4) by calculation of the hyperfine splitting in T1,
Pb and BL['6]. At the same time, for the wave function oféS -
electron at short distances the quasiclagsical Fermi-Segre ap-
proximation (see, e.g.,[32]} is good. This follows from calcul-
ation of the hyperfine splitting constants ﬂjﬁk andJﬁEh in T1
(ﬁea footnote after formula (11)). Thus, the preseni paper and
the papar[16], in our opinion, confirm the correciness of the
results obtained in[4' 2 6].

As has been already mentioned in Introduction, the discrep-
ancy in estimating the parity violation effects between [&'6]
End{T"SJiB probably due to the fact that in the latters the con-
tribution of excitations 6$26p*s¢sép?’ ©) ia overestimated.
We have seen indeed that the value of'fﬁs is 1.7 times less than
that found with the effective potential (3), (4). The calcula-
tion with the Hartri-Fock wave functionsf33? 3%] givea approxi-
mately the same overestimation. Note, that in the potential (3)
the parameters can be chosen, in prineipal, in such a way (H~
.f‘-'.f"-) % ~0,405) that the calculated value of ¥, becomes closer
to the experimental one, However, in this case, the wave func-

. tions of the electrons at zero are too large. As the result of
this, the effect is overestimated as well,

We are deeply grateful to I.B.Khriplovich who stimulated
the writing of this paper and evinced keen interest in it. Ve

" are indebted to V.N.Novikov who took part in some calculationa.
We wish to express our gratitude to I.L.Beigman, I.I.Sﬂhafman

and L,A.Vainatein for useful discussions.

6) In the wnrks[T“B]the procedure of inexplicit summation (the
Steiheimer method) at which thie contribution was not separated

directly was used. However, it is evident that this does not

influence the eseence of the matter.

i b

Appendix
The configuration mixing

Let us consider the question of the influence of the mixing
between different configurations on the parity violation effecte
{4'5] and the polarizebilities calculated in the present work,
Firstly, the mixing can occur between the excited configurations
over which the summation ie carried out when the effect is cal-
culated. Secondly, the admixture to the ground configuration is
poesible. Ae to the first case, such & mixing may be quite in-
tensive (20 + 40%), nevertheless, it influences the effects of
interest very slightly. It is easy to verify indeed that a relia-
tive contribution from this mixing to the parity vioclation ef=-
fects and polarizability constitutes ‘%}E A"i“é A ‘gd‘.it. , Where

£ 1is the mixing coefficient; AF ie the difference of emer-
gies of the mixing levels; [ and E; are the emergies of
the ground and excited configurations.

Since only the clospe levels mix strongly, i.e. AEJ‘EI‘E{;
this contribution does not exceed several percente.

The question of an admixture to the ground configuration
ls somewhat more complicated. This question ie urgent eince it
is known that the mixing of the configurations 25 2P amg 2p"*%
in the lightest analogues of lead, bismuth and polonium = cere
bon, nitrogen and uﬁigen - 18 strong enough £3§} Tj. Neverthe-
lees, it is foumd, that the admixture to the ground configura-

tione in Tl, Bi and Pb is small, One can judge the range of

7) We are indebted to I.I.Snbeﬂm&n, I.L.Beigman and L.A.Vain-
stein who {yrred cur attention to thig circumstance.
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the configuration mixing in not too heavy atoms by comparing
the experimental values of the parameters R%?' E(E(‘S)*E(i@))/
(E{{z)) - E (/329)) for configurations ¢ and P‘;, and
Rai':[E(*F_)*-E{"f}))/(E(fz}) -—E(%)) for P* with the theoretical
value found in the one-confipguration approximation for LS-
—couplinglj’ﬁ:[..l?nr atoma of C, ¥ and O the difference between
the experimental and theoretical values R is quite signific-
ant indeed {see Table 11). In thie case, the reason of a strong
mixing is that due to the nesrness of the effective principal
quantum numbers the exchanpe Coulomb integral 25 -2p is compars =
tively large. In the more heavy esnalogues this integral decreas-
es, and hence the configuration mixing becomes slighter. The
acreement of the experimentel and theoretical values of the pa-
rameters K Dbecomes good (see Table 11). (We do not give R
for Pb, Bi and Po since it is evident that the experimental va-
lues must differ from the theoretical ones obtained in LS-coup-

ling because of a strong spin-orbital interaction)., Thus, in
7 i
to 9 F

. i ? Kkl
heavy atoms an admixture of the configuration p

is comparatively small. There is no difficulty to calculate di=-
rectly this admixture., We take into account that the exchange
Coulomb integral & {nshrp, nsap)= 3 15':.f'?’) gelt) Gs (% )ﬁaf'aj dyd
which determines the mixing of interest, can be found from the
splitting of terms of the configuration msnp™ [_36] . There are
necessary experimental data only for the analogues of mercury
(' $* ), thallium (.’::'iP} and lead {52;02' }[EUI. The exchange in-
tegrals obtained in this way are presented in Table 12 (for Si
and Pb the necessary data are lacking). In the same Table the
distances AF between the centres of the mixing configurations
are given., We have found them by doubling the distances bet-

E Wb i .
ween the configurations s’ * and 5p . The mixing coeffici-
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ents o which are defined by the equality
i

!as+z> -3 fSEPK, 152} +ﬁ’-l P2 -rs-Hf} (19)

are equal to

%k £t 3 &,
' S e s AE P L= 1F
7 & i b S > S (20)
stp’p L= 12 AE : s
s o = ,Ed-—*‘é

The numerical values of the mixing coefficients £ are given
in Table 12. It is seen that the configuration mixing becomes
2=2.5 times lower when passing from the light atome to their
heavy esnalogues.

~ Finally, we calculate the parameters K for the configura-
tion 5?'.»“"?' , taking account of the mixing under considermtion,
Uging (20) we get

E(S)~E(%®)

R= "El0)- E(%)
hence RM (Iﬂ'): 1.07; Rcml(s”)= 1.43, that agrees well with
experimental values R(C€) = 1.13; K(Sa) = 1.41.

__35}2 :
AE(E(2)~E(P)) (21)

=45 -

The paremeters R for the configurations iﬂz’*’P{ have been
previously Tound[?'|with the configuration mixing taken into
account. Unfortunately, in the mentioned paper the found coel-
ficients of the configuration mixing were not presented.

The calculations presented here and the calculation of
a hyperfine structure [1 Gjalﬂ.owing to determine an admixture of
the configuration 6sép“ns to 65’6P‘ﬂhuw that admixitures to the
ground confipurationa of Tl, Pb and Bi do not exceed probably
10%. Besides the above-mentioned arguments a smallness of mix-
ing with the ground cenfiguration in Tl, Pb and Bi is confirmed

by the agreement of experimental and calculated values thg
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ES -] L 3 P ?

transi- -4
-factors (in the case of ) -coupling the Coulomb mixing inf- tion 6Py>10$ P> Py 6py10S fP.g‘"ﬁ;;
luences j -factor), the agreement of experﬁmé”tal and calculat- ,'{(,{J 2208 2211 2666 2672
ed values of the oscillator strengths in T1l, Pb and Bi,and Gt i

: : - st an 0,0100 " 0,0057 0,0035 ~0,0001
nearness of the values zﬂ"ﬁ' in T1, Hg and Au ( if in Tl and :
: : - | i sxperi- 0,010 a
Hg the state 6s* may be mixed with £~ , in Au such a mixing ;efl”ér' tn,gau% :g:gggg tS:E%; s
is impossible).
Tahle 1

Oscillator strengths for transitions 6}05,5,95""'!&5 75/(15"56?)
in T1.

o e 9s 105 6dy Sq{g S gd e
ation 231 0.74 042 0,29 -2,13 — -1,08 -=0.70 -0.51
ﬁﬂi exper., 2.23 0.67 0.38 — «1.99 — =0,93 <0.56 -0,39

calc.
exper. 1#‘}4 1¢10 1-12 —- 1-07 5= 1;16 1.25 1.31
g?iﬁulﬁ_ 3.22 0,85 0,47 0,31 =-2,91-2,85 =1,34 -0,84 -0,61
SP{,; exper. 2,83 0,66 0,37 — =76%-2,58 -1,14 -0.65 =0,46

. calc,
éxpex, 1«14 1.29 1.27T — BRI LW 1.0 LW -

. Table 2

Calculated and experimental (from oscillator strengths [”]}
radial integrals in T1 and their ratios.

L R R R RRRRRRRRRRBRRRRRRRRRRRBBRRRRRRRRRRBRRRRRRRRRRR




e

mJ'
nsS-lev- cuit. -HJ—lev- cont.

iy
7§ 8§ els,n>8 spect. 65{12 ?a";i els,n>7# spect. 55‘5}91 55553/
LY ff2.28 0.4 0.08  0.13 2.67 0.51 0.26 1.09 2.931.72
" i
£ |0.241 0.353 0.40 0.61 0.329 0,383 0.41 0,56 0.58 1.14

Table 3

Contributions of different excitations to polarizability of Tl.

o) =923 7 A, =_—1_— A quenti is tak
fI’Qm [M;g‘ (Z%ZZAI),A;Q f-F/:ﬁl' quan ty Ed 8 taken

| 75 Bs o5 108 dy .6dg - 8d 94

0.89 0.32 0.22 -1.82 -0.84 -0.50 -0.36
P3| 2.55 0.90 0.33 0.20 -2.41 -2.32 -1.02 ~.58 -0.42

3 6pPy| 1.45 0.78 0.29 0.19 -1.66 -0.77 =0.46 -0.32
T .
§P3| 2.19 0.79 0.30 0.19 -2.20 -2.11 ~0.94 -0.53 -0.38

Table 4

Radial integrals for excitations of Sp—alectron in Pb and Bi.

teransition gpi(j’%)"f Ep(P,)=\6P°CR )= 167" CPI-16P ()
S(6pEs) [P TS), Bp?S) (s 73), \-eped)
A(A) 2834 3685 3641 4059 2803
calculation 0.214 0.119 0.063 0.148 0.305
experiment 0.212 0.116 0.063 0.153 0.30
£0.003 | +0.003 | 20,002 | £0.004 | *0.02
Table 5

, Ei#
Calculated and expermanﬁai\éﬂﬂillﬁtor gtrengths in Fb,

s r _ y : # {
J=1 (637 S), (6p6ay) 6pr85),  sum g/ f
1,3 calcul- o i
GP(fq') Sibh 0.0174 0.,0378 0,0109 0,066 l
exper- 0.024 0.019 0.0134 0.0564

iment +0.002 +0,007 +0.0008 0,007

J=2  (n7), Gpédy),  (6pédg),  ewm £

- g
in'y| calcul- ;

6p(Py) ation 0+ 0.0347 0.0217 0.187

exper- 0.107 0.051 0.036 0,194

iment $0.006 +0.003 +0.003 +0,007

Table 6

The sum rules for oecillator sirengths in Fo.

Experimental date are taken from

o7
i



ws | s | opes | Fulembs | esef
final 6/03 5'/917?’;0 5 : -iz% z
Gk gtate lifetime (nséc) &5 A | 2.0 0.17 0.40 0.05 0.22 1.53
LT V'l 2l 2’ | & calcul-| experi-
state i% 5& s /% @5’: Gﬂ’}%&ﬂ’f‘%ation ment 2 9,322 - Hu 15 0.444 0.43 0.71 0.744
Z n : 3
o 2|3069 (472 4. 751, spred | eped | 6 > nd | cont.
5 fi ¥ 2 9152 (3069 |4724 b 4,?5.«:0.1:53 s 3 % prd b Wt B 54/5/9’
- A +920,.2
10°]0.03|27.61.24 2.9 g?ﬁr E -4 0.23 0.66 0.44 1.77 0.87
a
E A |449412277|3078 3512 |35868 | 102881 54 % 2743, i 0.420 0.542 0.478 0.51 0.67 1.51
; “é ot "102 Ut?ﬂ 1:5‘1 {}104 2.55 13r1 U-91 EEIE,J
a
sl A |4310|2229]|2990 (8547|3396 O e s i
78, - ' 6
Y 5{3. -5 ,
% ;13 0.15(10.4|7.34]0,05{3.02 Tt Contritutions of different exoitations o polarisability
2 A 350820121 262916138(2940(12002| 15347 a of Pb. '
¢ 5 5 4.5 4.80.4
¢ 7!.’10 5.54|0.6414,32]0.26/16.6(28.1 | 4.38
— a
p eyl A 2231{2994 8582|3404 53305 > 3,8%1,
a < 2 S o il I
K et i . ™ ;1 U. E 11. 1..!_'21'5
I /{’Tﬂ 24.5|1.62|0,13 1 ¢ 4 ’ ;é?s :ziif}'j f%;_g i{-gs :zi_.zi‘gs ffgi Zﬁ: cont. p
e S 2062/ 2698 3026 18021~ |5-520.5 - il icliabiiel Novet 5
s A e S P i 670 | % | n 9202t ) Frr'| 157 |1.20 [0.11 [0.14 ] 0.24 [0.02 | 0.11| o0.26 | 0.79
I - &, 0.299 | 0.425/0.62 | 0.43 | 0.56 | 0.75 | 0.56 0.75 | 0.96
[
tied \tied|22ad i (4237 |2 > nd
Table 7 z2 12 : Z 3377 22502 cont. ,{-,% ¢
Oscillator strengths and lifetimes of the levels in Bi. 4 LYol sas |3
1 5 .30 0.20] 0.37] 0. ; )
Oscillator strengths are given for a transition from the e § 3 44 1 0.05 | 0.68] 2.10 | 0.48
upper level to the lower one. - & 0.406 | 0.547| 0.74 | 0.47 0.60 [ 0.79 | 0.58] 0.70 | 1.80
| aﬁg{/. /7 b
fE E}[' 12 Table 9
. c}?é?& 13 Contributions of different excitations to polarizaebility
| _ ]

of Bl ), JonS(nd) = 5, 5p,1S (nd).




element | Au He T1 Pb Bi
& 79 80 81 82 83
Poy 1w2,2 =19 w175 w10 -1.5
2 I T, ¥ 1.2 1.1
Table 10

Radisl integrals furES-e»é‘/{J anda’d"--aé;p excitations

config-

i Rt 3‘?‘3%%%;1 Rs: | atom , Eggi;gr: Rs |atom | iration Ry

r > s*2p% (1,13 | ® |2s"2p' o.500f 0 |2 s* 2p%11,14

st |3s%3p |1as | » [35%3p | 06es|s |3 s'3p"1.43

ce | as74p?|1.50 | as [4s'ap’| o.666| se |45 4p1.50

sn |5s'sptl1ar | so |5s's5p | 0.664| me |55 5p" 1.54

theory pl 1.50 ‘ps 0.667 p* 1,50
Table 11

Experimental and theoretical values of the relations R, =Ry =

=(E("5)~ECDYEl'p)-E(D)), ky=(ECP)-E(DYe(D)-E(S),

Tn order to exclude the fine splitting in linear approximation,

¥
in the configurations f" end £ it should be taken

E(p)=

:-:f(E(ﬂ)*E(;D_,)) . For calculation of A’; we used the sner-

action do not influence the latters.

'gies of the levels :’D}{z' and ﬁ)g since the spin-orbital inter-

Z |stom | Siia] froen [a107ea | Gicats T
4 | BDe 2 5% 10,3 72 0,25
5 | B 252p | 14.6 122 0.17
6 }-a 25%2p* | 18.0 220 0,08 0.08 0,16
12 | Mg 35% 6.6 72 0.16
CRNET A e s 104 0.13
|14 | st 35"3;" .3 P
Y30 | | 28* S 81 0.15
31 Ga 43‘4; 9.2 123 0,11
32 | Gce 45°ap" <1, £ 0,01
48 | ca 552 6.5 80 0.14
49 | mm | 55'p | 1.9 12 0,10
50 | sn 55°5p" 4.0 112 0.035 0.035 0.07
80 | Hg 685t 5.6 95 0.10
g1 | . | 65%p 8.8 136 0.09
82 | m 65%6p* — —
Table 12

Exchange Coulomb integrals, distances beiween the configu-

X *+2
rations S' }J and p , and coefficients of their mixing

in the analoge of Hg, Tl and Pb. The mixing coefficients
: 2 2
for the configuration Sf are given in the order }9, b’ i‘;
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