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The way to find the intensity of gravitati-
onal radiation of ultrarelativistic charge in an
external electromagnetic field is presented, The
method is applicable to a wide class of problens,
The closed expression is obtained for the radia-
tion intensity in the case of circular orbit in
the Coulomb field,



The problem of gravitational radiation of an
ultrarelativistic charged particle in external
electromagnetic field was discussed previously in
the works/I-4/. But the consideration made in |
these works seems to us to be not quite satisfac-
tory due to the reasons discussed in detail below,

In the linear approximation in gravitational

field the Einstein equations can be written as

aﬁuﬂp:ﬂ@i*-?}i (1)

% %ﬁ, = (2)
Here we put c=I, %167k where k is the Newton
gravitational constant, Bhew =By = Gy, and Zh,
is the deviation of the metrics of the flat one,
?ﬁ} is the energy-momentum tensor of the particle,
‘;ﬁ is the energy-momentum tensor of the electro-
magnetic field. It is quadric in the field, i.e.,
¥~ FF4+2Ff+£f, The square of external field FT
has nothing to do with the particle motionm and
therefore will not be discussed below, It is un-
necessary also to account of the square of the
particle field ff since almost everywhere f«T',
and at small distances of the particle where f

is large, its contribution is taken into account



by mass renormalization, i.,e., is contained alre-
ady in T/, . Thus only the term 2Ff is essential
here and below we shall take just this quantity

as T#L, This term is necessary for the conserva-
tion of the energy-momentum tensor since for a
particle in an external field T/, is not conser-
ved by itself. To account of jS only in the equ.
(I) (and just in this way the problem under dis-
cussion was considered in the works/I,4/) is inad-
missible,

But the contributions of T/fp and ‘I‘ffy into
the gravitational wave field are not alike, While
the former is the usual outgoing spherical wave,
the latter does mot at all fall with distance if
external field does not vanish at infinity (and
Tf,.a '---'7‘,_,4-'-é’“."'ﬁ”'r"m-"blr )Je The point is that the par-
ticle electromagnetic radiation is resonantly
transformed into gravitational one in exbternal
field. This effect was for the first time pointed
at by Gertzenshtein/5/ (see also /2/).

The problem of gravitational radiation in
homogeneous magnetic field was considered in the
work/2/. An independent meaning was ascribed the-
re to that part fﬁ’of gravitational field which
falls with distance. Bub as one can check easily,

c?u julj/' Z (0 and the non-vanishing divergence of
/ur“

is necessary to cancel out the terms awfg-



in the divergence of the resonant part of the
field. The separation of four-dimensionally tro-~
- nsverse part of %‘ﬁ is by itself an ambiguous
procedure, Thus in a problem with infinite homo-
geneous external field only the resonant part ol
radiation can be found correctly., And a model
with arbitrarily cutbt off homogeneous field is in-
admissible since such cuboff violates the Maxwell
equations hence leading bto non-conservation ol
the energy-momentum tensor,

It is natural therefore to consider the pro-
blem with inhomogeneous field of the simplest po-
saible kind: the circular motion in the Coulomb
field. The characteristic wave-~length of the uli-
rarelativistic particle radiation is much smaller
than the orbit radius r, and the external field
varies slowly on the wave-length, Hence in this
case one can speak of the resonant conversion of
the electromagnetic radiation into the gravitatio-
nal one, Calculate this effect.

Let —~Q be the charge of the centre, and e,m
be the charge and the mass of Tthe particle. Then
eQ=nrr, =£r, where I:(vaj)ﬂ&. In the ultrarela-
tivistic case (/>I) the synchrotron radiation is
directed into narrow cone tangentially to the
trajectory. Inside the cone the external field
depends only on the coordinate x directed along



the ray. Thefefore, look for the solution of the
equ., (I) as

%uu = fZ /v(“’f/f
where (uux) is a slowly varying function of X

Substltutlng the expression for T v in the wave
zone of the synchrotron radiation

7— e Z (&) /é’ ‘o (x—2)

into the right—hana 51de of the equ., (1), obtain
the equation (for ﬁ’l'f-%*:f)

-2/

o s (3)
e~ ik

Neglect the second derivative oi the slowly va-
rying function a/;,(aﬁ,x). Then the solution at
infinity is P
2 g
- = __ T

The following components only of dyuy: Ay, Ayz,
a,, econtribute to the gravitational radiation,
Taking into account the explicit structure of ;w,
one can easily see that the resonant conversion
takes place only due to the components of the
external field orthogonal to the wave vector,
After simple calculations we come to the follo-
wing expression for the intensity of the resonant
gravitational radlatlon Lyes o

I T.Z-em 3’2_ (52

where



_ Loe syt 6)
is the intensity of the synchrotron radiation,
Evidently, the angular and speetral distributions
of ITyee and I, ,6 coincide. |

It should be noted that the resonant and
non-resonant parts of gravitational radiation do
not interfere, This fact was pointed out in the
work/2/ for the case of homogeneous magnetic
field, In the Appendix we present the general
proof of this statement., It is clear then that
Ires is at any rate the lower bound for the total
intensity of gravitational radiation,

Estimate now the intensity of non-resonant
gravitational radiation I,, . For this purpose
compare it with I_.,,. These quantities differ,
firstly, in coupling constants: ke’ in I, and
e* in I,,.. Secondly, the component of the vector-
potential contributing to electromagnetic radia-

tion is three-dimensionally btransverse: A, ~ @ ~
~ 7#7%; and the potential of gravitational field
is doubly transverse: ¢, —~ g°~ s . (We use he-
re the purely kinematical fact that any radiati-
on of The ultrarelativistic particle lies inside
a cone with the angle Qﬂhmfﬁf) Accounting of these
two distinctioﬁs and of the formula (6), we find




= .
| Ip ~ 57 (7)

This result was obtained in the work/6/ at

the consideration of the problem of ultrarelati-

vistie rotator, :

Now it is clear that the expression (5) is
not only the lower bound, but also the correct
ultrarelativistic approximation for the total in-
tensity of the gravitational radiation of the
éharge moving in a circular orbit in the Coulomb
field,

The problem considered was being solved by
numerical method in the work/3/. The result agre-
es qualitatively with ours, but differs in the
numerical coefficient., We have no doubts whatsoe-
ver in our result, the more so, as it is confirm-
ed by the direct calculation (see the Appendix).

It is quite clear that Ixer can be computed
for the motion in arbitrary slowly varying exter-
nal field once I, is known. Find in general case
the conditions under which I, constitutes the
main part of gravitational radiation, Consider at
first the case when the deflection angle « of the
particle in the field is much larger than the ang-
le of the cone to which the radiation is confined
O~ &7, Then the estimates (6), (7) for I, and
L4y are valid (r, means now the characteristic im-



pact parameter). In this case
¥
Loy ~KF @ Lon~ 7—" (8)

where F is the characteristic external field
strength, @ is the path of the light in this fi-
eld, From (?), (8) follows

I"’ﬁ, """“““’ | (9

where R-é?eF is the radius of curvature of the
particle's trajectory. If the paths of the light
and the particle in the external field are of the
same order of magnitude, then a/R ~>>d" ? and he~
nce the resonant radiation is dominating. This is
the general solution of the protlem of gravitati-
onal radiation in a field sufficiently strong and.
slowly varying. :

Analogous estimates at « {fij(here both Lgm
and Igr are /¢ times smaller than at o¢>> 7 ) show
thet in this case the contribution of resonant ra-
diation is small,

Unfortunately, the problem considered seems
to be of purely methodical interest since dnsall
the real situations which we can imagine, the ra-
diation intensity turns out negligible.

We are sincerely grateful to V.V,Flambaum,

E.V.Shuryak and A.I,Vainshtein for valuable dis-
cugsions., |



APPERNDIX

Present now the straightforward calculation
of gravitational radiation of ultrarelativistic
particle moving in the Coulomb field in a circu-
lar orbit. Split the gravitational field ,@w-in-
to the parts }gﬁ and }@w whose sources are 25,
and @ﬁ; respectively, As to the ;gﬁ , it can Dbe
computed in a routine way (see, e,z., /2/). We
do not present these calculations here, the more
S0, as y%ﬂﬁproves to be of higher order in e
than fﬁ. The computation of all the components
of g&ﬁ_ia useful since it permits of independent
check-up by means of the condition (2), account-
ing of course of the 51913 as well, But-we present
here the computation of those components of %’fw
only which contribute to the intensity of radia-
tion, omitting systematically in yﬂﬁ,the terms
~O%m» 2and k,b, (m,n=I,2,3) where B is the wave
vector of the radiation and the vector B is an
arbitrary one, i

The tensor T7, is

Th —- Ll LE)  w

Where é? is the external field and ® is the field
of thg particle. The arrow here and below means

IO



+hat the terms ~~ Owmny KD, 2r€ onmitted.
Analyze y;,lnbo FDUIlPT components

where &), is the rota ion frequency. Solving the

wave equatz on in a .:tandur way, we obtain the

following ex T”Sulﬁﬂ for /fln.thM wave zone

=4 aff inl
'P/ = @2z)? /f’ = /&'“J'/z—- L (A.2)

e (- 673 + Y5
Here (‘13) and ?f( are the particle's coordina=-
4te and velocity, k=nw,, E=kR/R. In (4.2) the
FTourier-transform of The source T{lﬁ substituted
for by its expression via the contractlon of the
Tourier-transforms of bthe fields ér and E.
The integral e St
PSS e S
—9’/ (A""’—f‘?f-zf) =

by means of the Eeynman parametrization

il g ":/4;/zéizw+1fzk-aij7_é’

is redueed to the .J.o:r.'m

..;;"y;/fé":ff-{ﬁ_:/;t 4 K” +7ﬂ/1’k’-——/Z/ CAH)

]
After the substitution of (A.4) in:bo (L.2) the
integration over ¥ is carried out trivially.
Wix now the system of coordinates. Let the
trajectory lie in the pléne X,T. Put the obsexr-—




R R e - e A b ol b L e o

vation point B into the plane Y,Z so that R=R(O,
sin@,cosB). The integration over t leads Then to
Bessel functions and we obtain the next formulae
for those components of W; through which the in-

tenqity is expressed .o

yﬂcwze_ & ke’ ﬁ/ mvﬁ".:r/{_j (z) ;;w; ﬁ[/
///-.:r/— /,,__7(_3 ﬁ—mé’ ? //-.r/..(A vD)

ﬂ*awﬂ9
{Hﬂ¢WW%uﬁz

# o £ gwﬂ-ﬂ/f [ TS
__f/... -—_// zmé’f &-’/2 _,meg "‘ﬂ.rfzﬁm?///:/ f

Here F=nvxsin®,
The integrals of the Type
/‘,,/ g -2/ (nvzs5in8)

can be computed at large n (in the ultrarelati-

vistic limit just n>»T1 are essential) if one ex-
pands ~Z(nvxsin9) in the viecinity of %x=I in pow-
ers of x-I. Then the integration leads to the

-%

ribution to the radiation is given by navdJ; we

series in powers of n . Since the major cont-
obbain the gravitational {ield in the wave zone
as an expansion in terms of J'{h

The intensity of the radiation is reduced
after all substitutions to the form (only the
leading in / terms sre presented)



a/J? = g 2 Z”J[J} ‘avsind) “f"w"/"’w%ﬁ 7)

or
JI:-’;?JJ;M ' (A.8)
in complete agreement with the result presented
in the text.
Prove now that resonant and non-resonant
parts of gravitational radiation do not interfe-
re, The field }@ﬂ; is proportional to

ST FR-G/{(7/ (4.9)
where* B -G, y %
)'//f'/w%/i/ . ://7//;3;2_“?1—(&?@{%&_10)

—gree

The second term in the curly brackets is the .so-
lution of the free wave equabtion, so that its
contribubion corresponds to the resonant part of
the radiation., This term is shifted in phase by
J/2 relatively to the non-resonant partof ;ﬂ .
The latter in its turn should have the same pha-
se as %ﬂbto guarantee the transversality of the-
ir sum, Hence the made assertion follows,
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