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The problem of finding the frequencies of small longitudinal oscillations of a spring having a finite
mass and stiffness, attached at one end to a wall and at the other end to a body of finite mass,
is discussed. This problem was repeatedly proposed at Olympiads for schoolchildren, in various
lessons on the Internet, and even on tests in mechanics for students of universities. In all the cases
known to me, the implied solution was actually wrong. I discuss two cases: (A) a spring lies on a
smooth table, (B) a spring is attached to the ceiling. It is shown that the solution to this simply
formulated problem is non-trivial.

I. INTRODUCTION

The reason to write this article was a problem that I accidentally came across on the Internet. It turned out that this
problem was very popular and was discussed many times in various online lessons, offered at school Olympiads and
even on tests in mechanics for students of universities. To my surprise, a solution implied to be correct was actually
wrong. The problem is formulated very simply (see Fig.1A): find the frequency of small longitudinal oscillations of a
spring having a finite mass m and stiffness k, attached at one end to a wall and at the other end to a body of mass
M ; the spring is on a horizontal plane, friction should be neglected.

The solution that was considered to be correct was the following. Let u is the speed of the body and the length of
undeformed spring is l. Then, the speed of a point located at a distance y from the fixed end is (y/l)u. Accordingly,
the total kinetic energy of the system is

T =
1

2
Mu2 +

1

2

∫ l

0

(m
l

)
· y

2

l2
u2 dy =

1

2
(M +m/3) u2 .

The potential energy U of a system is U = kz2/2, where z is the deviation of the body from the equilibrium position,
u = ż . Comparing T and U with the corresponding expressions for a conventional spring oscillator, we find the

FIG. 1. Oscillations of a spring having a finite mass m and stiffness k, g is the acceleration of gravity. (A) The spring is on a
horizontal smooth plane. (B) The spring is attached to the ceiling.

∗ A.I.Milstein@inp.nsk.su

ar
X

iv
:2

40
5.

00
05

0v
1 

 [
ph

ys
ic

s.
po

p-
ph

] 
 1

5 
A

pr
 2

02
4

mailto:A.I.Milstein@inp.nsk.su


2

oscillation frequency Ω:

Ω =

√
k

M +m/3
. (1)

The above solution cannot be correct, because there should be an infinite number of oscillation frequencies, but not
one. The set of functions corresponding to different modes of oscillation should form a complete set of functions which
allows one to find a solution for a spring motion with an attached body under arbitrary initial conditions. This paper
is devoted to finding these oscillation modes. I show that Eq. (1) is not completely meaningless, since it represents a
good approximation to one of frequencies for an arbitrary value of the ratio Q = m/M . The case of a spring attached
to the ceiling is also considered (see Fig.1B).

II. EQUATION OF OSCILLATIONS

Let a point with coordinate y in an undeformed spring of length l deviate from its position by a distance x(y, t) at
time t. As is known, one-dimensional oscillations of an elastic medium are described by the wave equation

ẍ(y, t) = c2 x′′(y, t) , (2)

where ẍ(y, t) = (∂2/∂t2)x(y, t), x′′(y, t) = (∂2/∂y2)x(y, t) and c is the speed of sound. In our case

c =

√
k

m
l . (3)

It is not difficult to derive Eqs. (2) and (3) if we represent a spring with mass m and stiffness k as N balls with masses
m0 = m/N , interconnected by springs having stiffness k0 = kN and length l0 = l/N , with the first ball connected by
a spring to the wall, and the last ball to a body of mass M . It is assumed that N ≫ 1. Let the deviation of the ball
with number n at time t from its equilibrium position be equal to xn(t). Write down Newton’s second law for the
motion of this ball:

m0 ẍn(t) = k0[(xn+1 − xn) + (xn−1 − xn)] . (4)

Since xn+1(t)− xn(t) is a small quantity for N ≫ 1, then

xn+1(t)− xn(t) ≈
∂

∂n
xn(t) +

1

2

∂2

∂n2
xn(t) = l0

∂

∂y
x(y, t) +

l20
2

∂2

∂y2
x(y, t) ,

xn−1(t)− xn(t) ≈ − ∂

∂n
xn(t) +

1

2

∂2

∂n2
xn(t) = −l0

∂

∂y
x(y, t) +

l20
2

∂2

∂y2
x(y, t) , (5)

where y = nl0 and xn(t) = x(y, t). Substituting (5) into (4), we obtain the equation

ẍ(y, t) =
k0
m0

l20 x
′′(y, t) =

k

m
l2 x′′(y, t) ,

coinciding with (2). Next, let the deviation of a body of mass M from the equilibrium position is xN+1(t). Then
Newton’s second law for body motion has the form

M ẍN+1(t) = k0 (xN − xN+1) = −k0
∂

∂n
xn(t)|n=N+1 = −k0l0

∂

∂y
x(y, t)|y=l .

Taking into account the relation k0l0 = kl, we find the boundary condition

M ẍ(l, t) = −kl
∂

∂y
x(y, t)|y=l . (6)

Thus, to find the frequencies of small oscillations, one needs to solve Eq. (2) with boundary conditions (6) and

x(0, t) = 0 . (7)

The derivation of equations given here, based on discretization, is similar to that used in many textbooks when
discussing sound oscillations (see, e.g., the textbook [1]).
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FIG. 2. Dependence of R = ω0/Ω on Q = m/M .

III. CALCULATION OF FREQUENCIES

It follows from the boundary condition (7) that the solution to the wave equation with a certain frequency ωj is
standing wave:

ηj(y, t) = Aj sin(ωjt+ αj) sin(qjy) , qj =
ωj

c
, (8)

where Aj and αj are the amplitude and phase of the wave. From the boundary condition (6) we find the dispersion
equation

φj tgφj = Q , (9)

where Q = m/M and φj = ωj l/c. Using (3), we obtain an expression for the frequency

ωj = φj

√
k

m
. (10)

Eq. (9) depends only on the ratio Q and is independent of k and l. As it should be, Eq. (9) has an infinite number
of solutions φj , to which the frequencies ωj are proportional. These solutions belong to the intervals

jπ < φj < jπ + π/2 ,

where j = 0, 1, . . . . If Q ≪ 1, then φ0 =
√
Q and φj>0 = jπ +Q/(jπ). Therefore, for Q ≪ 1

ω0 =

√
k

M
, ωj>0 = jπ

√
k

m
≫ ω0 . (11)

If Q ≫ 1, then φj = (jπ + π/2)(1− 1/Q). As a result, for Q ≫ 1

ωj = (jπ + π/2)

√
k

m
. (12)

It is natural to compare the frequency ω0 with Ω (1). We see that ω0/Ω = 1 for Q ≪ 1 and ω0/Ω = π/(2
√
3) = 0.907

for Q ≫ 1, so that ω0 and Ω are practically the same for all values of Q ! The dependence of ratio R = ω0/Ω on Q is
shown in Fig. 2.

IV. PROBLEM WITH INITIAL CONDITIONS.

As already noted, an infinite number of frequencies is necessary to solve the problem with initial conditions

x(y, 0) = X(y) , ẋ(y, 0) = V (y) .
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Let us write the corresponding solution x(y, t) in the form

x(y, t) =

∞∑
j=0

[aj cos(ωjt) + bj sin(ωjt)] sin(qjy) , qj =
ωj

c
. (13)

It follows from the boundary conditions that

X(y) =

∞∑
j=0

aj sin(qjy) , V (y) =

∞∑
j=0

ωj bj sin(qjy) . (14)

To find the coefficients aj and bj from these equations, we use the relations∫ l

0

cos(qiy) cos(qjy) dy = 0 , i ̸= j ;∫ l

0

cos2(qjy) dy =
l

2

(
1 +

sin 2φj

2φj

)
. (15)

Taking the derivative with respect to y from both sides of Eqs. (14) and applying the relations (15), we obtain

aj =
4

2φj + sin 2φj

∫ l

0

cos(qjy)X
′(y) dy ,

ωj bj =
4

2φj + sin 2φj

∫ l

0

cos(qjy)V
′(y) dy . (16)

Interestingly, solutions with different j are not orthogonal to each other in the common sense:∫ l

0

sin(qiy) sin(qjy) dy = − l

Q
sinφi sinφj ̸= 0 , i ̸= j . (17)

Let us consider an example of the boundary conditions X(y) = Ly/l and V (y) = 0, corresponding to the experiment
in which we slowly stretched the spring to a length L and then released it. In this case bj = 0 and

aj =
4 sinφj

(2φj + sin 2φj)φj
L . (18)

At Q ≪ 1 we have

a0 =
L√
Q

, aj>0 =
2 (−1)j Q

(jπ)3
L ≪ a0 . (19)

Thus, at Q ≪ 1 higher modes are not excited. For Q ≫ 1 we find

aj =
2 (−1)j

(jπ + π/2)2
L . (20)

Consequently, at Q ≫ 1 all modes are excited, but the wave amplitudes quickly decrease with increasing j .
It is interesting to discuss the fraction of the total energy E in each mode. Using the discrete model described in

Sec. II, we obtain

E =
m

2l

∫ l

0

ẋ2(y, t) dy +
kl

2

∫ l

0

x′2(y, t) dy +
M

2
ẋ2(l, t) . (21)

Substituting Eq. (13) into this formula, we find

E =

∞∑
j=0

εj , εj =
k

8
φj (2φj + sin 2φj) (a

2
j + b2j ) . (22)
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For the case considered above, E = kL2/2 and

εj =
kL2

2

4 sin2 φj

φj (2φj + sin 2φj)
. (23)

For Q ≪ 1 we have

(E − ε0)

E
=

Q2

45
≪ 1 .

For Q ≫ 1 the contribution of oscillations with ωj>0 to the energy is

(E − ε0)

E
= 1− 8

π2
= 0.19 .

Thus, in the example under consideration, the main contribution to the energy comes from the oscillation mode with
the lowest frequency. It is easy, however, to come up with a problem where the oscillation mode with an arbitrary
frequency ωj is mainly excited. To do this, forced oscillations must be used.

V. FORCED OSCILLATIONS

Let us apply a periodic force F(t) = F sin(νt) to the body. Then we have the equations

ẍ(y, t) = c2 x′′(y, t) , M ẍ(l, t) = −kl
∂

∂y
x(y, t)|y=l + F sin(νt) . (24)

For ν ̸= ωj the solution corresponding to forced oscillations is

x(y, t) = A sin(νt) sin
(ν
c
y
)
, A =

F

k

Q

ϕ cosϕ (Q− ϕ tgϕ)
, (25)

where ϕ = νl/c. It is seen that at ϕ → φj the amplitude A of forced oscillations tends to infinity (resonance). For
ν = ωj the resonance solution reads

x(y, t) = −2F

kl

sinφi

2φi + sin 2φi
[ct cos(ωit) sin(qiy) + y sin(ωit) cos(qiy)] , (26)

where qi = ωi/c. As it should be, the amplitude of oscillations increases linearly with time.

VI. SPRING IS ATTACHED TO THE CEILING.

Let us now find the oscillation frequencies of a spring attached to the ceiling (see Fig. 1B). Similar to the derivation
given in Sec. II, we obtain the equations

ẍ(y, t) = c2 x′′(y, t) + g , M ẍ(l, t) = −kl
∂

∂y
x(y, t)|y=l +Mg , (27)

where g is the acceleration of gravity and c2 = kl2/m. The stationary (time independent) solution h(y) of these
equations has the form

h(y) =
g

k

[
(m+M)

y

l
−m

y2

2 l2

]
. (28)

Making substitution x(y, t) = h(y) + x̃(y, t) we find that the equation for the function x̃(y, t) coincides with Eq. (27)
at g = 0. Thus, the frequencies of small oscillations in cases (A) and (B) are the same.
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VII. CONCLUSION

This paper shows that the seemingly simple problem of oscillations of a massive spring with a body of finite mass
attached to it has a non-trivial solution that has interesting physical content. Using the example considered, we are
once again convinced that not everything that seems obvious is correct.

[1] J.M. Ziman, Principles of the theory of solids (Cambridge, The University Press, 1974).
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