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SINGULARITIES OF FAMILIES OF EVOLVENTS IN THE NEIGHBORHOOD 

OF AN INFLECTION POINT OF THE CURVE, AND THE GROUP Ha 

GENERATED BY REFLECTIONS 

O. P. Shcherbak UDC 513.83 

In [I] the singularities of the family of evolvents of a plane curve in the neighborhood 
of a convexity point of the curve were studied. Namely, it was shown that there is a diffeomorphism 
of the plane which reduces this family to a unique normal form. In the present paper we 
solve a similar problem for inflection points of the curve. 

The investigation of the singularities of the families of evolvents of a curve in 
Euclidean plane is called in the physical interpretation the plane problem of bypassing an 
obstacle. Here the curve is seen as an obstacle and the evolvents as the fronts of a light 
flux which moves bypassing the obstacle. Every front is the level line of a (multivalued) 
time-function which measures the time the light needs to reach a given point of the plane 
bypassing the obstacle. A light flux which envelops the obstacle (i.e., which moves along 
it with unit speed) yields a natural parametrization of the obstacle, r:R ÷ R 2. The fronts 
are images of the lines sl + s2 = const under the map ~: R 2 ÷ R 2, ~ (sl, s2) = r(sl) + s2~. 

(sl). The quantity s~ + s2 = t is the value of the time-function on the corresponding front, 

In this paper we find the normal form of the graph of the time-function with respect to 
diffeomorphisms of the phase-space which preserve the value of the time coordinate, in the 
neighborhood of an inflection point of the obstacle. 

By straightforward computations one may readily establish the form of the fronts in the 
neighborhood of an inflection point of the obstacle (such computations were first done by V. 
I. Arnol'd). Thus, the front passing through the inflection point has at this point a singu- 
larity 5/3 (i.e., it is locally diffeomorphic to the curve x s = y3 at zero); the other fronts 
display two singularities: one (of type 3/2) on the obstacle, and a second (of type 5/2) on 
the line tangent to the obstacle at the inflection point (Fig. I). The graph of the time- 
function in a neighborhood of the inflection point is showed in Fig. 2. 

A. B. Givental' made the observation that the manifold of irregular orbits of the group 
H3 generated by reflections, which wasearlier studied by Lyasko [5], looks the same way, 
and he conjectured that these two objects are actually diffeomorphic. 

The main result of our paper is a proof of this conjecture. 

THEOREM I. The graph of the time-function in the plane problem of bypassing an obstacle 
is diffeomorphic, in a neighborhood of an inflection point, with the manifold of irregular 
orbits of the group H3. 

In other words, there is a local diffeomorphism of space-time in the space of all orbits 
of Ha, which takes the graph of the time-function into the manifold of irregular orbits. 

The orbit space of the group ~3 is a three-dimensional space with a basis provided by a 
basis of invariants of Ha. This basis consists of polynomials of order 2, 6, and 10 (see, 
for example, [7]). 

THEOREM 2. The diffeomorphism of Theorem I can be selected to take the time coordinate 
(up to a constant shift) into the coordinate corresponding to the vector of degree 2 in the 
aforementioned basis. 

In the three-dimensional problem of bypassing an obstacle, the light flux enveloping the 
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Fig. I. Fig. 2. 

obstacle (surface) is a beam (one-parameter family) of geodesics on it. For obstacles in 
general position this beam has an asymptotic direction at the points of some curve lying on 
the obstacle. 

THEOREM 3. In the three-dimensional problem of bypassing an obstacle, the front passing 
through a general point of the asymptotic direction of the enveloping beam is locally diffeo- 
morphic at this point to the manifold of irreglar orbits of the group H3. 

Proof of Theorem I. Using the Huygens principle [3], we can think of any front as a 
radiating surface. All the other fronts are fronts of this surface, and the obstacle itself 
plays the role of a caustic [3, 4]. The germ of the graph of the time-function at an in- 
flection point P of the obstacle can be entirely reconstructed from the germ of a front F, 
which does not pass through P, at its singular point Q of type 5/2. 

Consider the family of functions f(x, y, t) = p(x, y) - t, where x are coordinates in 
the plane in a neighborhood of the point Q, y are coordinates in the plane in a neighborhood 
of the point P, t denotes time and p is the distance function in the plane (here y and t are 
regarded as parameters). The restriction of this family to the front F is the generating 
family for the Legendrean mapping defined by the light flux [4]. The graph of the time-function 
is the set of those values of the parameters for which the zero level set of the function 
f(., y, t) is tangent to F (by tangency at a singular point of the front we mean tangency in 
the direction of the edge of the front). 

Thus, the problem is now to reduce to normal form a family of functions given in a plane 
with a boundary which has a singularity 5/2 [5]. We first bring the boundary to the normal 
form x~ = x~ by means of a change of the x-coordinate. Using the results of [5] one may 
readily see that our family can be put in the form f(x, %) = x2 + ex~ + %ix~ + %2xi + %3, 
where ~ = s(%), and % are new coordinates in the parameter plane (k = 0 corresponds to the 
point under consideration on the graph of the time-function). In [5] it was proved that the 
above set of values of the parameters is, independent of the function ~(%), diffeomorphic to 
the manifold of irregular orbits of H3. 

Proof of Theorem 2. This theorem is a corollary of Theorem 3 and the results of [2]. 
To apply the latter, we need only verify that the derivative at zero in the direction of the 
base vector of degree 2 of the function resulting by transporting the time-function to the 
orbit space of H3 via the diffeomorphism of Theorem I does not vanish. This follows from the 
fact that the time function is not singular on the cuspidal edge 3/2 of its graph, whereas 
the differentials of the invariants of degrees 6 and 10 vanish on this edge. 

Proof of Theorem 3. As indicated in [6], at a generic point of the asymptotic line tan- 
gent to the beam, the front has a singularity of the type of a cuspidal edge 5/2 (i.e., in 
the coordinates x = (xl, x2, x3), it is locally given by the equation x~ = x 2 2). Now define 

the generating family f(x, y) as in Theorem 3, fixing a value t = to so that f(0, 0) = 0. 
Using the technique of paper [5], we put our family in the form f(x, %) = x2 + x = a + ax~ + 

%,x~ + %=x + %a. N o t e  t h a t  s i n c e  t h e  b o u n d a r y  i s  a c y l i n d r i c a l  s u r f a c e  w h o s e  g e n e r a t r i c e s  
a r e  p a r a l l e l  t o  t h e  x 3 - a x i s ,  t a n g e n c y  o f  t h e  z e r o  l e v e l - s e t  o f  t h e  f u n c t i o n  f ( ' ,  %) can  o c c u r  
o n l y  f o r  x3 = 0 ( b e c a u s e  a f / a x ~  = 0 ) .  C o n s e q u e n t l y ,  t h e  s e t  o f  b i f u r c a t i o n a l  v a l u e s  o f  t h e  
p a r a m e t e r  i s  t h e  same a s  i n  T h e o r e m  3. 
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A CLASS OF SYSTEMS OF VOLTERRA INTEGRAL EQUATIONS OF 

FIRST KIND 

A. Asanov UDC 517.968 

Let us denote the set of the matrices acting in En by M, where En is the n-dimensional 
complex (real) Euclidean space. The set M becomes a Hilbert space if the scalar product [A, 
B]M of its elements A = (aij) and B = (bij) is defined by the equation 

n 

i--i j--1 

Definition. A matrix-valued function A(t, s) = (aij(t, s)) ~L2([a, b] × [a, b]; M) is 
called a Hermitian matrix-valued kernel if the following conditions are fulfilled: aij(t, 

s) = ~ji(s, t), (i, j = l, ..., n) for almost all (t, s) ~ [a, b] × [a, b]. 

The following lemma is valid by virtue of Remark 9.1 of [l]. 

LEMMA I. Each Hermitian matrix-valued kernel A(t, s) is expanded in the sense of con- 
vergence in the norm of the space L2([a, b] × [a, b]; M) in the series 

where {~(~)( t ) :  (~v)(t))} is an orthonormal sequence of vector-valued eigenfunctions from L2([a, 

b]; En) , {%v} is the sequence of the corresponding nonzero eigenvalues of the Fredholm inte- 
gral operator A, generated by the matrix-valued kernel A(t, s); in addition, the elements of 
{h~} are disposed in the order of decreasing modulus. 

LEMMA 2. If operator A, generated by a continuous Hermitian matrix-valued kernel A(t, 
s), is nonnegative, then series (I) is uniformly convergent, i.e., 

lira sup I1 A (t, s) - -  A (N) (t, s)JIM = O, 
N ~ m  (t, s)~[a, b] ×[a, b] 

w h e r e  A ( N ) ( t ,  s )  d e n o t e s  t h e  N - t h  p a r t i a l  sum o f  t h e  s e r i e s  ( 1 ) .  

Lemma 2 is a generalization of the Mercer theorem [2] and is proved by analogous method. 

Let us consider the following system of Volterra integral equations of first kind: 

t 

K u ~ I K ( t ,  s) u ( s ) d s  i(t), t ~ [ a ,  b], (2)  
a 

where K(t, s) = (Kij(t, s)) ~ L2(G; M), g = {a < s < t < b}, and u(t) = (ui(t)), f(t) = 

(fi(t)) ~ L2(~, b]; En). Let the following conditions be fulfilled: 
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