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1 Introduction

Recent advances in spectroscopy of ordinary hydrogen [1, 2] and deuterium [3] and in

their muonic analogs [4, 5] as well as in the electron-proton scattering [6] provide new

opportunities to perform subtle tests of the bound-state quantum electrodynamics (QED).

The hydrogen atom is a system in which the role of the relativistic, radiative, and

recoil effects can be investigated with high precision, both experimentally and theoretically.

The corresponding corrections to energy levels are small compared to the leading term;

however, with a present accuracy achieved in measuring the frequency of specific hydrogenic

transitions, those contributions are large compared with the experimental uncertainty.

One of the most important bound-state QED effects is the Lamb shift. It is responsible

for the 2s1/2 – 2p1/2 energy splitting, which in the Dirac equation approximation would

be zero. The calculations of various contributions to the Lamb shift have a long history

starting from Refs. [7–10], see also review [11] and references therein. For the s-states all

corrections have been calculated up to the order mα2(Zα)6 ln
(
1/(Zα)2

)
. The mα2(Zα)6

contribution has not yet been calculated, although this correction may be important already

in the next series of spectroscopic measurements.

In the present paper we calculate one of the previously unknown corrections to the

Lamb shift of order mα2(Zα)6, which is connected with the radiative corrections to the

Wichmann-Kroll (WK) potential. We use modern multiloop methods and obtain analytic

result in terms of conventional polylogarithmic constants. Recently, we applied similar

approach to the calculation of certain two-loop corrections to Lamb shift and hyperfine

splitting in hydrogen, Ref. [12]. The present calculation provides yet another example of

the effectiveness of multiloop methods for obtaining analytic results in atomic physics.

2 Energy shift due to radiative correction to WK potential

Feynman diagrams for the radiative correction δρ̃(q) to the Wichmann-Kroll charge den-

sity are depicted in Fig. 1. On the same figure we also show the diagrams with one-loop

conterterms. The black squares on solid lines correspond to the mass counter terms iδm =

– 1 –



2× 2×

2× 2× 2× 2×

(a) Diagrams with one electron loop. Black squares correspond to the mass counter term iδm.

2× 2×

(b) Diagrams with two electron loops. Black squares correspond to the vertex −iδZA(q
2gµν−qµqν).

Figure 1: Feynman diagrams corresponding to the radiative corrections to the Wichmann-

Kroll charge density δρ̃(q).

im (4πα)m−2ϵ(3−2ϵ)Γ(ϵ)
(4π)2−ϵ(1−2ϵ)

, while the black squares on dashed lines correspond to −iδZA(q
2gµν−

qµqν) = i (16πα)m
−2ϵΓ(ϵ)

3(4π)2−ϵ (q2gµν−qµqν). In principle, we should also account for the diagrams

with one-loop fermion field renormalization and vertex counterterms, but their contribu-

tions cancel due to the Ward identity.

The corresponding correction to the potential δṼ (q) = δρ̃(q) · (e/q2) contributes to

energy shifts. The characteristic atomic momenta q are small compared to the electron

mass. Therefore, we need the small-q asymptotics of ρ̃(q). This asymptotics can be ana-

lyzed using the expansion by regions approach. There are two regions which are relevant

to this asymptotics. The hard region corresponds to all loop momenta ∼ m. In this region

we expand the integrand of δρ̃(q) in Taylor series in q. The zeroth term corresponds to the
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sum of diagrams in Fig. 1 at q = 0. It is easy to see that, due to the identity

N∑
k=1

Tr
[
γµ1(p̂− l̂1 −m)−1 . . . γµk(p̂− l̂k −m)−1γα(p̂− l̂k −m)−1 . . . γµN (p̂− l̂N −m)−1

]
= − ∂

∂pα
Tr

[
γµ1(p̂− l̂1 −m)−1 . . . γµN (p̂− l̂N −m)−1

]
, (2.1)

this sum can be written as the integral of total derivative which is zero in dimensional

regularization. The sum in the left-hand side of the above identity corresponds to all

possible insertions of the vertex γα in the fermion loop.

The contribution to δρ̃(q) linear in q is zero due to rotation symmetry. Therefore, the

expansion in the hard region starts from q2 term,

δρ̃(q) ≈ (δṼ (0)/e) · q2. (2.2)

Note that the sum of the two diagrams on the last row of Fig. 1b is suppressed by an

additional factor q2, therefore, they can be neglected within our present accuracy.

There is also a soft region, corresponding to all momentum transfers to the nucleus

q1, q2, q3 = q − q1 − q2 being small. Due to the gauge invariance of the light-by-light block

it is easy to see that the corresponding contribution starts from q4−4ϵ, which is also too

small for our present accuracy.

Eq. (2.2) shows that the potential V (r) = e
∫
eiqrδρ̃/q2dq/(2π)3 is proportional to the

delta function and the Lamb shift contribution can be written as:

δE = |ψnℓ(0)|2δṼ (0) = m
α2(Zα)6

π2n3
Bδℓ,0 , (2.3)

where B is a numerical coefficient to be calculated, m is the electron mass, n and ℓ are the

principal and angular quantum numbers, respectively.

3 Calculation and result

The small-q expansion of the diagrams in Fig. 1 can be expressed in terms of the integrals

of the family

j(n1, · · · , n9) =
∫
dq1dq2dl1dl2

π2d

12∏
k=1

D−nk
k ×

14∏
s=13

δ(ns−1) (Ds)

(ns − 1)!
, (3.1)

where

D1 = 1− l21 , D2 = 1− l22 , D3 = 1− (l2 − q2)
2 ,

D4 = 1− (l2 + q1)
2 , D5 = 1− (l1 + q1)

2 , D6 = −(l1 − l2)
2 ,

D7 = −q21 , D8 = −q22 , D9 = −(q1 + q2)
2 , D10 = (l1n) ,

D11 = (l2n) , D12 = (l1 − q2)
2 , D13 = (q1n) , D14 = (q2n) . (3.2)

Here n = (1,0) is a time-like unit vector and we putm = 1. The functionsD1−9 andD13−14

correspond to the denominators of the topology depicted in Fig. 2. The δ-functions in Eq.
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Figure 2: Topology corresponding to the integral family in Eq. (3.1). Numbers correspond

to the subscript k of the denominator Dk in Eq. (3.2).

(3.1) secure the energy conservation. Note that n10−12 ⩽ 0 and the prescription −i0 for

D1−9 is implied.

Making the IBP reduction [13, 14] with LiteRed [15], we reveal 14 master integrals,

see Fig. 3.

Figure 3: Master integrals.

Note that the counter-term diagrams in the last line of Fig. 1 can also be expressed

in terms of the four-loop master integrals in Fig. 1 although they have only three loops.

To this end we multiply the corresponding integrals by 1 = −1
Γ[1−d/2]

∫
ddl2

iπd/2D2
. Then the

contribution of counter-terms is expressed via the master integrals with unit mass tadpole

loop, namely, via j1 and j5.

Since the integral family (3.1) contains no dimensionless free parameter, the differential

equations method can not help directly. Therefore, there is a temptation to calculate the

master integrals with the DRA method [16]. Unfortunately, there is a nontrivial 2 × 2

diagonal block in the matrix of dimensional recurrence, corresponding to the integrals j8
and j9 which belong to one and the same sector. Although it is, in principle, possible

to apply the DRA method also for the cases with nontrivial diagonal 2 × 2 blocks as

discussed in Ref. [17, 18], its application in this case is much more laborious than that

for the triangular matrix. Fortunately, for the present task we may apply a combined
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Figure 4: Master integrals of the two-scale family. Blue lines denote massive propagators

with mass m.

approach. First, we use the DRA method for all integrals but j8, j9, and j14 (the latter

integral belongs to a super-sector of the sector of j8,9). In order to obtain information

about analytical properties necessary for fixing periodic functions in homogeneous parts

of the solutions, we use the approach of Ref. [19]. Namely, we choose the integrals which

are obviously finite on a sufficiently wide vertical stripe in the complex plane of d. For

example, in order to reveal the analytic properties of the most complicated integral j13
we use finiteness of the integral j13f = on the stripe Re d ∈ (3, 5]. Reducing

j13f to the master integrals, we obtain a number of nontrivial constraints for the leading

expansion terms of j13 on the basic stripe (3, 5]. The results of the DRA approach have the

form of n-fold triangular sums with factorized summand and n ⩽ 3, We use SummerTime

package [20] to calculate the ϵ-expansion of these sums with high precision and PSLQ

algorithm [21] to recognize the result in terms of multiple zeta values.

Note that all three remaining integrals, j8, j9, and j14, contain two disjoint massive

loops. In order to calculate those integrals, we consider a family of integrals with different

masses in these two loops. This family is defined by Eqs. (3.1) and (3.2) where one should

replace D1 → D̃1 = m2 − l21, D5 → D̃5 = m2 − (l1 + q1)
2 and assume that n6,7 ⩽ 0 (in

addition to n10−12 ⩽ 0). This family corresponds to the denominators of j14, where the

unit mass in the left-most fermion loop is replaced by m. Performing the IBP reduction,

we reveal 14 master integrals depicted in Fig. 4. We obtain the differential system

∂mj̃ =M(ϵ,m)j̃ (3.3)

for the column j̃ = (j̃1, . . . , j̃14)
⊺ and reduce it to ϵ-form using Libra [22]. The general

solution of Eq. (3.3) is expressed in terms of harmonic polylogarithms [23]. The boundary

conditions are put at m → 0. We use expansion by regions [24, 25] to fix the required

coefficients in the asymptotic expansion of integrals. The original integrals j8,9,14 are

recovered as

j8 = j̃8
∣∣
m=1

, j9 = j̃9
∣∣
m=1

, j14 = j̃14
∣∣
m=1

. (3.4)
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Note that other integrals in Fig. 3 which contain two disjoint fermion loops are also

expressed in terms of the master integrals in Fig. 4:

j1 = j̃1
∣∣
m=1

, j3 = j̃2
∣∣
m=1

, j4 = j̃3
∣∣
m=1

= j̃4
∣∣
m=1

, j7 = j̃5
∣∣
m=1

, j11 = j̃12
∣∣
m=1

.

(3.5)

This provides a number of nontrivial cross checks of the obtained results for the master

integrals.

Finally, we expand the diagrams in Fig. 1 in q and perform the Dirac algebra using

FeynCalc [26]. After the IBP reduction and substitution of the results for the master

integrals, we obtain our final result for the coefficient B in Eq. (2.3). We present the

contributions of diagrams in Figs. 1a and 1b separately:

B1a =
1456

45
Li4

(
1
2

)
− 4511π4

16200
+

182 ln4 2

135
+

274

135
π2 ln2 2− 2387π2 ln 2

1080
+

199ζ3
45

+
13057

3240
+

3703π2

5760
= 0.125181281880322 . . . , (3.6)

B1b =
71ζ3
56

− 479

756
+

38401π2

217728
− 283

756
π2 ln 2 = 0.070271202837585 . . . , (3.7)

B = B1a +B1b = 0.195452484717907 . . . . (3.8)

4 Conclusion

In the present paper we obtain the contributions of order α2(Zα)6m to the Lamb shift

from radiative corrections to the Wichmann-Kroll potential depicted in Fig. 1. Numeri-

cally our result (3.8) appears to be rather small and compatible with the heuristic estimate

B = 0.13± 0.13 of Ref. [27]. For the calculation of master integrals we use a combination

of the DRA method and the approach based on the differential equations. This calcula-

tion provides yet another example of the effectiveness of multiloop methods for obtaining

analytic results in atomic physics.

Acknowledgments

The work has been supported by Russian Science Foundation under grant 20-12-00205.

References

[1] N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman, A. C. Vutha and E. A. Hessels, A

measurement of the atomic hydrogen lamb shift and the proton charge radius, Science 365

(2019) 1007.

[2] A. Grinin, A. Matveev, D. C. Yost, L. Maisenbacher, V. Wirthl, R. Pohl et al., Two-photon

frequency comb spectroscopy of atomic hydrogen, Science 370 (2020) 1061.

[3] C. G. Parthey, A. Matveev, J. Alnis, R. Pohl, T. Udem, U. D. Jentschura et al., Precision

measurement of the hydrogen-deuterium 1s− 2s isotope shift, Phys. Rev. Lett. 104 (2010)

233001.

– 6 –

https://doi.org/10.1126/science.aau7807
https://doi.org/10.1126/science.aau7807
https://doi.org/10.1126/science.abc7776
https://doi.org/10.1103/PhysRevLett.104.233001
https://doi.org/10.1103/PhysRevLett.104.233001


[4] A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro, F. Biraben, J. M. Cardoso et al., Proton

structure from the measurement of 2s-2p transition frequencies of muonic hydrogen, Science

339 (2013) 417.

[5] R. Pohl, F. Nez, L. M. Fernandes, F. D. Amaro, F. Biraben, J. M. Cardoso et al., Laser

spectroscopy of muonic deuterium, Science 353 (2016) 669.

[6] W. Xiong, A. Gasparian, H. Gao, D. Dutta, M. Khandaker, N. Liyanage et al., A small

proton charge radius from an electron–proton scattering experiment, Nature 575 (2019) 147.

[7] H. A. Bethe, The electromagnetic shift of energy levels, Physical Review 72 (1947) 339.

[8] R. Karplus, A. Klein and J. Schwinger, Electrodynamic displacement of atomic energy levels,

Physical Review 84 (1951) 597.

[9] N. M. Kroll and F. Pollock, Radiative corrections to the hyperfine structure and the fine

structure constant, Physical Review 84 (1951) 594.

[10] R. Karplus and A. Klein, Electrodynamic displacement of atomic energy levels. I. Hyperfine

structure, Physical Review 85 (1952) 972.

[11] M. I. Eides, H. Grotch and V. A. Shelyuto, Theory of Light Hydrogenic Bound States,

vol. 222. Springer-Verlag, Berlin, 2007, 10.1007/3-540-45270-2.

[12] P. A. Krachkov and R. N. Lee, Two-loop corrections to Lamb shift and hyperfine splitting in

hydrogen via multi-loop methods, JHEP 07 (2023) 211 [2306.13369].

[13] K. Chetyrkin and F. Tkachov, Integration by parts: The algorithm to calculate β-functions in

4 loops, Nuclear Physics B 192 (1981) 159.

[14] F. Tkachov, A theorem on analytical calculability of 4-loop renormalization group functions,

Physics Letters B 100 (1981) 65.

[15] R. N. Lee, Litered 1.4: a powerful tool for reduction of multiloop integrals, Journal of

Physics: Conference Series 523 (2014) 012059.

[16] R. Lee, Space-time dimensionality d as complex variable: Calculating loop integrals using

dimensional recurrence relation and analytical properties with respect to d, Nuclear Physics B

830 (2010) 474 [0911.0252].

[17] R. N. Lee and K. T. Mingulov, Dream, a program for arbitrary-precision computation of

dimensional recurrence relations solutions, and its applications, arXiv:1712.05173.

[18] R. N. Lee and K. T. Mingulov, Meromorphic solutions of recurrence relations and dra

method for multicomponent master integrals, JHEP 04 (2018) 061 [1712.05166].

[19] R. N. Lee and A. F. Pikelner, Four-loop hqet propagators from the dra method, JHEP 02

(2023) 097 [2211.03668].

[20] R. N. Lee and K. T. Mingulov, Introducing summertime: a package for high-precision

computation of sums appearing in dra method, Comput. Phys. Commun. 203 (2016) 255

[1507.04256].

[21] H. Ferguson, D. Bailey and S. Arno, Analysis of pslq, an integer relation finding algorithm,

Mathematics of Computation 68 (1999) 351.

[22] R. N. Lee, Libra: A package for transformation of differential systems for multiloop integrals,

Comput. Phys. Commun. 267 (2021) 108058 [2012.00279].

– 7 –

https://doi.org/10.1007/3-540-45270-2
https://doi.org/10.1007/JHEP07(2023)211
https://arxiv.org/abs/2306.13369
https://doi.org/https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/https://doi.org/10.1016/0370-2693(81)90288-4
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/DOI: 10.1016/j.nuclphysb.2009.12.025
https://doi.org/DOI: 10.1016/j.nuclphysb.2009.12.025
https://arxiv.org/abs/0911.0252
https://arxiv.org/abs/arXiv:1712.05173
https://doi.org/10.1007/JHEP04(2018)061
https://arxiv.org/abs/1712.05166
https://doi.org/10.1007/JHEP02(2023)097
https://doi.org/10.1007/JHEP02(2023)097
https://arxiv.org/abs/2211.03668
https://doi.org/10.1016/j.cpc.2016.02.018
https://arxiv.org/abs/1507.04256
https://doi.org/10.1016/j.cpc.2021.108058
https://arxiv.org/abs/2012.00279


[23] E. Remiddi and J. A. M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15

(2000) 725 [hep-ph/9905237].

[24] M. Beneke and V. A. Smirnov, Asymptotic expansion of Feynman integrals near threshold,

Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391].

[25] A. Pak and A. Smirnov, Geometric approach to asymptotic expansion of Feynman integrals,

Eur. Phys. J. C 71 (2011) 1626 [1011.4863].

[26] V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: New features and improvements,

Comput. Phys. Commun. 256 (2020) 107478 [2001.04407].

[27] S. G. Karshenboim, A. Ozawa, V. A. Shelyuto, R. Szafron and V. G. Ivanov, The lamb shift

of the 1s state in hydrogen: Two-loop and three-loop contributions, Phys. Lett. B 795 (2019)

432 [1906.11105].

– 8 –

https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.1142/S0217751X00000367
https://arxiv.org/abs/hep-ph/9905237
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
https://doi.org/10.1140/epjc/s10052-011-1626-1
https://arxiv.org/abs/1011.4863
https://doi.org/10.1016/j.cpc.2020.107478
https://arxiv.org/abs/2001.04407
https://doi.org/10.1016/j.physletb.2019.06.023
https://doi.org/10.1016/j.physletb.2019.06.023
https://arxiv.org/abs/1906.11105

	Introduction
	Energy shift due to radiative correction to WK potential
	Calculation and result
	Conclusion

