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Abstract

A well-known Pierce’s solution [1, 2] that allows to focus a beam of
charged particles using properly shaped electrodes outside of the beam
is generalized to the case of multigap accelerating system. Simple para-
metric formulae for Pierce electrodes are derived for an accelerating sys-
tem with current density, limited either by space charge or by emitting
property of the cathode. As an example of general approach, Pierce
electrodes shape is analyzed for a system consisting of two accelerating
gaps. It is shown that Pierce’s solution exists if the potential U2 of the
second anode does not exceed the potential U1 of the first accelerating
electrode by more than a factor that for space-charge-limited system is
equal to (d2/d1 + 1)4/3, where d1 and d2 are the widths of the first and
second gaps, respectively. In the opposite case, U2/U1 � (d2/d1 + 1)4/3,
precise solution can hardly be implemented in actual devices but it can
still be used as a hint or even as trial function for numerical search of
quasi-Pierce electrodes. Based on numerical simulations, guidelines for
the design of focusing electrodes are given for the case when Pierce’s
solution does not exist.

c©Budker Institute of Nuclear Physics, SB RAS



В.И. Давыденко, А.А. Иванов, И.А. Котельников, М.А. Тиунов

Пирсовские электроды
для многоступенчатой ускоряющей системы

Аннотация

Известное решение Пирса [1, 2], позволяющее найти форму
электродов на границе плоского диода, которая минимизирует
угловую расходимость пучка заряженных частиц, обобщено на
случай системы, состоящей из нескольких ускоряющих зазоров.
Получены простые формулы, описывающие форму пирсовских
электродов в параметрическом виде в ускоряющей структуре
с током, ограниченным либо пространственным зарядом, либо
эмиссией катода. В качестве примера реализации общего подхода
исследована форма пирсовских электродов в системе, состоящей
из двух ускоряющих промежутков. Показано, что решение
Пирса существует, если потенциал второго ускоряющего электрода
U2 не превышает потенциал первого ускоряющего электрода U1

более чем на некоторый множитель, который в случае тока,
ограниченного пространственным зарядом, равен (d2/d1 + 1)4/3, где
d1 и d2 – толщина первого и второго ускоряющих промежутков,
соответственно. В противоположном случае, когда U2/U1 �
(d2/d1 + 1)4/3, точное решение технически трудно реализовать в
реальных устройствах, однако его можно использовать в качестве
ориентира при численном поиске электродов с формой, близкой к
пирсовской. На основе соответствующего численного анализа даны
рекомендации по выбору геометрии фокусирующих электродов для
случая, когда решение Пирса не существует.



.

1 Introduction

Pierce electrode is an important part of many electron and ion guns.
For a space-charge dominated gun, the shaped electrodes serve to es-
tablish correct potential variation along the beam boundary. The an-
alytic derivation by J.R.Pierce [1, 2] gives shape of the electrodes out-
side the beam aperture that sustains the potential profile within the
beam interior as it would be in an infinite planar diode which obeys
the Child-Langmuir law.

In our previous papers [3, 4], we have extended Pierce’s solution to
a multigap accelerating system, where the current density is limited by
space charge. In this paper we extend this treatment to a more general
case, where the current density can be limited also by the emitting
property of the cathode. Bearing in mind adaptation of general theory
to production of precise ion beams, which can be used, for example, for
plasma diagnostics [5], we consider an unit consisting of two planar gaps
as the most simple example. As was shown in [3, 4], Pierce-like solution
in multigap systems exists only if acceleration rate in second gap is, in
a sense, smaller that in the first gap. On the contrary, most commonly
used design of multigap systems adopts higher acceleration rate in the
second and in the following gaps. In this paper, we analyze this regime
in more details and show that shaping some of the electrodes according
to Pierce-like solution still allows to diminish emittence of the beam
though it is not possible to use Pierce-like shapes for all the electrodes
at once.

2 Child-Langmuir problem

Let us consider an accelerating system consisting of two plane gaps as
shown in Fig.1. The emitting electrode (cathode) is placed at the plane
z=0, first and second accelerating electrodes (first and second anodes)
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Figure 1: Schematic view of a planar diode with the steep current
density profile. Pierce electrodes outside the beam aperture, in the
half-space x > 0, compensate transversal electric field at the beam
edge so that Ex = 0 within the entire region x � 0, occupied by the
beam.

are placed at z = d1 and z = d2 + d1. The three electrodes have the
potentials ϕ = 0, ϕ = −U1, and ϕ = −U2, respectively.

We neglect thermal spread of ion distribution as it is usually done
in simplified theories. Then the ion density n and the current density
j are related by the hydrodynamic equation

j = en
√

−2eϕ/m. (1)

Finite ion temperature imposes lower limit on local angular divergence,
which can not be eliminated by Pierce electrodes. Evaluating n from
(2) and substituting it into the 1D version of the Poison’s equation

d2ϕ

dz2
= −4πen (2)

leads to an ordinary differential equation which describes particle flow
in a planar diode with somehow compensated transverse electric field at
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the periphery. The equation should be supplemented with the bound-
ary conditions

dϕ

dz
= −E0, (3a)

ϕ = 0 (3b)

at z = 0,

ϕ = −U1 (3c)

at z = d1, and

ϕ = −U2 (3d)

at z = d1 + d2. For a given electric field E0 at the first emitting
electrode the system (1)–(3b) yields the density j of electric current
through the diode. Alternatively, for a given j it allows to find E0

but the latter problem has no physical solution if j exceeds the current
density through the charge limited diode as predicted by the Child-
Langmuir law

jCL =
1

9πd2
1

√
2eU1

3

m
,

that corresponds to E0 = 0.
Henceforth the current density j is measured in units of jCL, the

coordinate z in units of the width d1 of the first gap, the potential
ϕ in units of the voltage ϕ(d1) = −U1 at the first anode, and the
electric field E in terms of U1/d1. It means that dimensionless electric
field is related to dimensionless electric potential by the equation E =
dϕ/dz (without minus sign), so that both E and ϕ are positive in an
accelerating system. Chosen way of normalization is suitable both for
ion and electron guns since eU3

1 must be positive for the particles of
given charge e to be accelerated by given potential −U1 at the first
anode.

In normalized units, Poisson’s equation (2) reads

ϕ′′ =
4
9

j√
ϕ
, (4)
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where the prime stands for the derivative over z. Integrating eq. (4)
once over z yields the first integral:

(ϕ′)2 =
16j
9

[
√
ϕ+ α] , (5)

where α is a constant to be found from the boundary conditions sep-
arately for the first and second gaps. As to the current density j, we
assume that it is the same in both gaps, and net current to the 1st
anode is absent. Henceforth we shall use the indices 1 and 2 to distin-
guish the parameters and functions related to the 1st and 2nd gaps,
respectively.

2.1 First gap

Since ϕ1 = 0 at z = 0, we conclude that

α1 = 9E2
0/16j (6)

within 1st gap. Integrating positive root ϕ′ > 0 of eq. (5) with the
boundary condition (3c), one obtains the equation

2α3/2
1 + (

√
ϕ1 − 2α1)

√
α1 +

√
ϕ1 =

√
j z. (7)

Together with the boundary condition ϕ1 = 1 at z = 1 it gives the
dependence j on the parameter α1:

j(α1) =
[
2α3/2

1 + (1 − 2α1)
√

1 + α1

]2
. (8)

Then eq. (6) relates E0 with α1:

E0(α1) =
4
3

√
j(α1)α1 =

4
3
√
α1

[
2α3/2

1 + (1 − 2α1)
√

1 + α1

]
. (9)

The parameter α1 varies from α1 = 0, when E0 = 0 and j = 1, to
α1 = ∞, when E0 = 1 and j = 0, providing parametric representation
of the dependence j on E0 through eqs. (8) and (9) as shown in Fig. 2.
The parameter α1 can be eliminated from eqs. (8) and (9) to give
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Figure 2: Plot j(E0).

explicit dependence j on E0:

j(E0) =
1
2

(
1 ±

√
1 − 27

4
E2

0 +
27
4

(E2
0)3/2

)
.

However the explicit form is less convenient since it is multivalued
function with two branches, which intersect at E0 = 2/3. The plus
signs in r.h.s. of the last equation is to be taken if E0 < 2/3, and the
minus sign is suitable for the case E0 > 2/3.

For a given parameter α1 eq. (7) together with eq. (8) implicitly
give the potential ϕ1 as a function of z:

z =
2α3/2

1 + (
√
ϕ1 − 2α1)

√
α1 +

√
ϕ1

2α3/2
1 + (1 − 2α1)

√
α1 + 1

. (10)

Eq. (10) is cubic in respect to
√
α1 +

√
ϕ1. Generally, cubic equation

with real coefficients may have one or three real roots for given values of
α1 and z. Two additional roots can merge merely at ϕ1 = 0; to prove
this, one needs to note that the derivative of r.h.s. of eq. (10) over√
α1 +

√
ϕ1 is equal to zero at the merging point. Inserting ϕ1 = 0

into r.h.s. of eq. (10) makes it equal to 0. It means that ϕ1(z) has
merely one real branch within the entire first gap. In particular case
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α1 = 0, corresponding to Child-Langmuir law, eq. (10) yields

ϕ1(z) = z4/3 (11)

for the region 0 < z < 1. If α1 → ∞, eq. (10) reduces to ϕ1(z) = z
since j → 0 and space charge becomes negligibly small.

2.2 Second gap

Applying the equation (5) to 2nd gap, one can deduce that

α2 = 9E2
1+/16j − 1, (12)

where E1+ is the electric field at z = 1 in the 2nd gap. Since j > 0,
the parameter α2 can vary from −1 to positive infinity, i. e. α2 > −1.
Similarly, the parameter α1 can be expressed through the electric field
E1− at the first anode from the side of 1st gap:

α1 = 9E2
1−/16j − 1. (13)

It is readily seen therefore that the difference of the parameter α2 from
α1 is related to the surface charge σ = (E1+ −E1−)/4π at the the first
anode. Hence, E1+ > E1− if α2 > α1, and α2 < α1 if E1+ < E1−.

Taking a positive root ϕ′ > 0 of eq. (5) with α = α2 and integrating
resulting equation with the boundary condition (3c) yields the equation

z = 1 +
(2α2 − 1)

√
α2 + 1 +

(√
ϕ2 − 2α2

)√
α2 +

√
ϕ2√

j
, (14)

which implicitly determines the potential in the 2nd gap. Being es-
sentially cubic equation in respect to

√√
ϕ

2
+ α2, it has three distinct

roots, but two of them are complex (i. e., nonphysical) or do not obey
the boundary conditions. Indeed, one can readily show that two real
roots merge at the point

zm = 1 +
(2α2 − 1)

√
α2 + 1 − 2α3/2

2√
j

,
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Figure 3: Real roots of eq. (14) for j = 1 at z = 1 (top, left), z = 2
(top, right), z = 3 (bottom, left), z = 4 (bottom, right). If ϕ2(z; 1)
is the potential in the second gap for the case j = 1, then the scaled
function ϕ2(z; j) = ϕ2(1+(z−1)

√
j; 1) gives the potential for a smaller

current density j < 1.

where they have the magnitude ϕ2 = 0. Since zm > 1 for any admiss-
able values of α2 and j, only one of the roots satisfies the boundary
condition (3c) at z = 1. Fig. 3 shows the dependence of all real roots
on α2 for successively growing coordinate z.

Together with the boundary condition (3d) eq. (14) relates α2 to
α1:

d2 =
(2α2 − 1)

√
α2 + 1 +

(√
U2 − 2α2

)√
α2 +

√
U2

2α3/2
1 + (1 − 2α1)

√
α1 + 1

. (15)

Physically feasible values of α2 grow as U2 becomes larger. It is seen
from (15) that U2 = (1 +

√
j d2)4/3 if α2 = 0; α2 > 0 for larger U2.

As an example, real branches of ϕ2(z) are shown in Fig. 4 for four
values of α2 = −1, 0, 0.5 and 1; if d2 = 3, these values correspond
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Figure 4: Real roots of eq. (14) for j = 1 at α2 = −1 (top left), α2 = 0
(top right), α2 = 0.5 (bottom left), α2 = 1 (bottom right). Electric
potential for smaller current density can be expressed through ϕ2(z; 1)
at j = 1 as ϕ2(z; j) = ϕ2(1 + (z − 1)

√
j; 1).

to U2 = 2.78, 6.35, 7.19 and 7.91 (recall that we use dimensionless
variables such that d1 = 1, U1 = 1).

3 Pierce electrodes
The equations (10) and (14) provide a solution to 1D problem where
particle flow is unbounded in any direction across the direction of the
beam. Space charge of a beam, limited in transverse direction, in-
evitably creates transverse electric field that increases angular diver-
gence of the flux. The transverse field can be compensated by a special
geometry of additional electrodes placed outside the beam. J.R.Pierce
[1, 2] showed that the shape of such electrodes can be found by means
of analytic continuation of the 1D solution.
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Let x = 0 be the plane boundary of the ion flux that occupies the
half-space x < 0, where the potential ϕ(z) is given by the equation (10)
or (14) for the first or for the second gaps respectively. The opposite
half-space x > 0 is empty. Then the function

ψ(x, z) = 1
2 [ϕ(z + ix) + ϕ(z − ix)] (16)

obeys Laplace equation

∆ψ =
∂2ψ

∂x2
+
∂2ψ

∂z2
= 0 (17)

in the empty region. The function ψ is continuous at the bound-
ary of the beam, ψ(0, z) = ϕ(z), and provides the continuity of the
transverse electric field since ∂ψ(0, z)/∂x = 0. The equipotential sur-
faces ψ(x, z) = const give the shape of conducting electrodes that can
provide required space distribution of potential ψ(x, z) at the beam’s
boundary.

To find the shape of the equipotential surfaces in empty region it
is sufficient to replace z by z+ ix and insert ψ+ is instead of ϕ1 or ϕ2

respectively in eq. (10) or (14). Separating real and imaginary parts of
these equations then yields the functions x(ψ, s) and z(ψ, s). The parts
describe the shape of equipotential surfaces with prescribed potential
ψ while the parameter s runs from zero at the edge of the beam to
positive infinity at x → ∞. On the contrary, for a fixed parameter
s and varying ψ, these functions give parametric presentation of the
electric force lines. Specifically,

z + ix = 1 +
2α3/2

1 + (
√
ψ + is− 2α1)

√
α1 +

√
ψ + is

2α3/2
1 + (1 − 2α1)

√
α1 + 1

(18)

in the continuation region that matches 1st gap. Pierce electrode that
touches the cathode is given by ψ = 0, and the opposite electrode is
given by ψ = 1. The shape of Pierce electrodes that touch first and
second anodes from the side of 2nd gap are obtained by equating ψ to
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1 and U2 in

z + ix = 1 +
(2α2 − 1)

√
α2 + 1 +

(√
ψ + is− 2α2

)√
α2 +

√
ψ + is

2α3/2
1 + (1 − 2α1)

√
α1 + 1

.

(19)
The two continuation regions, coming from neighboring gaps, over-

lap, if α2 > α1. Overlapping of neighboring regions means that Pierce
electrode matching first anode can not be actually inserted. In other
words, Pierce solution exists if

α2 < α1. (20)

As noted in Sec. 2.2, this occurs if E1+ < E1−. In particular case, when
the current density is limited by the space charge in the first gap, i. e.
j = 1, the inequality (20) is equivalent to

U2/U1 < (d2/d1 + 1)4/3. (21)

Shape of Pierce electrodes is shown in Fig. 5 for the space-charge-
limited diode, j = 1, and also for the same diode with current density
reduced by a half, j = 0.5. Facing surfaces of Pierce electrodes are
shown by lines with long dashes for the case j = 1, and short dashes
are used for the case j = 0.5. Chain curves (dashes alternating with
dots) designate left electrodes, while dashed lines show right electrodes.

Fig. 5,a illustrates the case, when insertion of Pierce electrode to
first anode is possible both for j = 1 and j = 0.5. In this case, left
boundary of the continuation region, matching second gap, goes to the
right of the right boundary of the continuation region that matches
first gap, i.e., chain line, matching the point x = 0, z = 1, goes to the
right from dashed line with dashes of same length.

In Fig. 5,b, intermediate Pierce electrode becomes thinner; for j = 1
this electrode shrinks to zero width since both α2 and α1 are equal to
zero while still α2 < α1 = for j = 0.5.

In Fig. 5,c, Pierce electrode for the case j = 0.5 also shrinks to zero
width as α2 = α1 = 0.5. As to the case j = 1, intermediate electrode
can not be inserted at all since chain line that touches first anode goes
to the left from dashed line.
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Figure 5: Pierce electrodes: long dashes—j = 1, α1 = 0, short dashes—
j = 0.5, α1 = 0.5; dashed and chain lines designate the electrodes
respectively on the left and on the right of corresponding gap; a) α2 =
−1, U2 = 2.78 for j = 1 and U2 = 1.94 for j = 0.5; b) α2 = 0,
U2 = 6.35 and U2 = 4.56; c) α2 = 0.5, U2 = 7.19 and U2 = 5.17; d)
α2 = 1, U2 = 7.91 and U2 = 5.69. For a given value of the parameter
α2 and the width of the gap d2 = 3, voltage at the second anode U2

decreases as j becomes smaller.

Finally, in Fig. 5,d, an intermediate Pierce electrode can not be
inserted neither for the case j = 1 nor for the case j = 0.5.

4 Non-equipotential Pierce electrodes
As it was show above, equipotential Pierce electrode can not be ad-
justed to first anode if α2 > α1. However it is still possible to use
Pierce-like solution for practical design by adjusting non-equipotential
electrode as shown in Fig. 6, where joined analytic continuation of the
1D solutions (11) and (14) of the Poisson equation is drawn for α1 = 0,
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Figure 6: Analytic continuation of (11) and (14) at α2 = 1.33. Contour
plot of max[ψ1(x, z), ψ2(x, z)]; dashed lines are electric field lines, i. e.,
contours of Im[ϕ(z + ix)]. Boundaries of analytic continuation ψ1 and
ψ2, matching respectively 1st and 2nd gaps, are shown by thick dashed
and chained lines as explained in Fig. 5. The two continuations overlap.
Thick solid line is the matching boundary where ψ1 = ψ2. Inclination
of electric field lines experience a jump at the matching boundary; it
means that the boundary bears surface electric charge.

α2 = 1.33, which corresponds to j = 1, U2 = 25/3. The analytical con-
tinuation ψ1(x, z) = Re[ϕ1(z + ix)] of (11), coming from the segment
0 < z < 1 of the beam boundary, matches the analytical continuation
ψ2(x, z) = Re[ϕ2(z+ ix)] of (14), coming from the segment 1 < z < 4,
at the matching surface where ψ1(x, z) = ψ2(x, z) shown as thick solid
line in Fig. 6.

While the potential shown in Fig. 6 looks as quite smooth, the
electric field experience a jump across the matching surface ψ1(x, z) =
ψ2(x, z). It means that the latter is actually not equipotential and bear
a surface charge. From technical point of view, it is hardly possible
to construct a structure that would provide prescribed distribution of
electrical potential and surface charge along a curvilinear surface. One
can speculate, though, that this can be done with the use of a winding,
made of a poor conductor and wrapped along the surface. Then a small
current, flowing from the anode, could provide desired distribution of
potential along the surface. For a given shape of the surface and a
given potential distribution along the surface, a desired distribution of
the surface charge will be automatically achieved.
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Figure 7: Variants of electrode cuts for various values of hole grid
transparency for j = 1: 1) intermediate electrode is shaped accord-
ing to analytical solution for first gap; 2) intermediate electrode is
shaped so that it is located in half-way between first and third vari-
ants at every distance from the beam edge; 3) intermediate electrode
is shaped according to analytical solution for second gap. The shape
of all electrodes for the cases j = 0.75 and j = 0.5 slightly differ from
the case j = 1 but the difference is hardly distinguishable in the scale
of the graph.

5 Computer fit of quasi-pierce electrodes
We used computer code UltraSAM [6] to simulate geometry of elec-
trodes edging near the beam edge in two-gap ion source and to mini-
mize the emittance of the beam in the case α2 > α1. In this section,
the results of computer simulation for a realistic ion source [4] with
d2 = 3, U2 = 25/3 are reported.

Of the three electrodes in two-gap-ion-system, merely edging geom-
etry of intermediate electrode (i. e. of the first anode) was varied while
that of the first and the third electrodes (i. e. of the cathode and second
anode) was kept extremely close to the analytical solution for planar
case described above.

Computer simulation was done for three distinct values of the hole
grid transparency of the system which correspond to the three values
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of the parameter j, namely j = 1, j = 0.75 and j = 0.5. For every
value of j, three variants of edging geometry for intermediate electrode
were simulated as shown in Fig. 7 that illustrates the case j = 1. First
variant of the intermediate electrode geometry (the electrode labeled
with the numeral 1) is exactly given by analytical solution for the first
gap of planar ion accelerating system. Third variant corresponds to an-
alytical solution for the second gap (numeral 3). Finally, in the second
variant (numeral 2) intermediate electrode goes exactly in the midst
of the first and the third variants. Since intermediate electrode crosses
first electrode at some distance from the beam edge in the second and
third variants (recall that the case α2 > α1 is under consideration in
this section), the distance from the edge was limited in this computer
simulation to not exceed the sum of the two gaps width, d1 + d2.

a)

b)
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c)

Figure 8: Different edging of two-gaps-ion-gun with maximal trans-
parency of grids, j = 1: a) intermediate electrode as anode of first
gap; b) intermediate electrode half-way between anode of first gap and
cathode of second gap; c) intermediate electrode as cathode of second
gap. On the left: geometry of electrodes and longitudinal electric field
at the beam edge; on the right: enlarged view of particles trajectories
near the beam edge.

Results of computer simulation are presented in Fig. 8 for the case
j = 1. They show that minimal minimal emittance of the beam is
achieved for the shape of the intermediate electrode edging in the
third variant, when the electrode acquires analytically calculated shape
matching second gap. Corresponding emittance of the edge trajectories
for these three variants are shown in Fig. 10,a.

Similar conclusions were made for j = 0.75 and j = 0.5. Computer
simulation certainly show that optimal geometry of intermediate elec-
trode edging corresponds to analytical solution for second gap. Fig. 9
shows optimal geometries of electrode edging for two-gap ion source
with d2 = 3 and U2 = 25/3 for reduced transparency of the source
grid. Fig. 10,b shows corresponding emittance at the edge of the beam.
In all these cases, the angle of deflection of edge trajectories does not
exceed one milliradian.
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a)

b)

Figure 9: Optimal edging of two-gaps-ion-gun with distinct lower trans-
parency of grids: a) j = 0.5; b) j = 0.75; c) for the case j = 1.0 see
Fig. 8,c. Intermediate electrode has shape of Pierce cathode for the
second gap.
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a) b)

Figure 10: Transverse angle at the edge of the beam: a) different edging
of two-gaps-ion-gun with maximal transparency of grids as shown in
Fig. 8, b) different grid transparency for optimal edging of two-gaps-
ion-gun shown in Fig. 9.

6 Conclusions

In this paper, we adapt an approach, initially developed by J.R. Pierce,
to the case of accelerating system with 2 planar gaps. We have shown
that external equipotential electrodes can compensate defocusing ef-
fect of a spatially limited charged beam providing that the rate of
acceleration in the second gap does not exceed the rate of acceleration
in a single-gap system of the same total width and the same voltage,
namely if U2/U1 � (d2/d1 + 1)4/3. We have expressed the shape of
compensating electrodes in the parametric form (18) and (19).

To avoid possible misunderstanding, we note that, from practi-
cal point of view, unattainability of exact spacial spacial charge effect
compensation does not prohibit obtaining well focused beam even if
U2/U1 � (d2/d1 + 1)4/3. Since the diode perveance grows and, hence,
the effect of space charge diminishes as U2 grows, increasing the volt-
age on the second gap allows to diminish defocusing effect of the space
charge if U2/U1 � (d2/d1 + 1)4/3 despite the fact that exact compen-
sation of the space charge is not possible in this case.
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