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Abstract

A popular demonstration which often accompanies the introduction
of magnetic induction is that in which a magnet is dropped through a
long conductive pipe. The induced currents cause a retarding force to
dramatically slow the descent of the falling magnet. Here we show that
the force is proportional to the velocity v at low velocities but dimin-
ishes as v−1 or v−1/2 when v exceeds some successive thresholds which
depend on the conductivity, magnetic permeability and the thickness
of the pipe wall. We discuss also the effect of a slit cut in the pipe wall
on the magnitude of the retarding force and describe measurements of
the magnetic forces and the magnet velocity as function of time in the
magnetic braking experiment.

Падение магнитного диполя через сплошную
и разрезанную проводящую трубу

Б.А. Князев, И.А. Котельников,
А.А. Тютин, В.С. Черкасский

В известном демонстрационном опыте, часто сопровождающем
лекции по электромагнитной индукции, магнит падает через длин-
ную проводящую трубку. Возникающие в трубке токи Фуко со-
здают тормозящую силу, которая существенно замедляют падение
магнита. В настоящей работе показано, что тормозящая сила про-
порциональна скорости v при малых скоростях, но уменьшается
при возрастании скорости сначала пропорционально v−1, а затем
пропорционально v−1/2. Мы также обсуждаем влияние продольно-
го разреза на величину тормозящей силы и описываем эксперимен-
ты по измерению тормозящей силы.

c©Budker Institute of Nuclear Physics SB RAS
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1 Introduction

Descent of a falling magnet in a vertical conducting pipe is a popular demon-
stration often used in introductory physics courses to illustrate the effect of
magnetic induction. Variable flux caused by the falling magnet induces eddy
currents in the pipe wall. The currents yield secondary magnetic field, which
in turn creates retarding force. The force dramatically reduces magnet ve-
locity in the metallic pipe than it does in ordinary free fall in a nonmetallic
pipe.

There are a number of papers where the effect of magnetic braking have
been described theoretically and verified experimentally for several conductor
configurations: sheet, air track, rotating disc, and pipe [1, 2, 3, 4, 5, 6, 7, 8, 9].
MacLatchy et al. [5] gave a simple theory for the retarding force for a mag-
net in the infinite pipe that appears to be proportional to magnet velocity v.
They have calculated the terminal velocity v∞ of the magnet and recorded the
e.m.f. signal experimentally by the use of a multi-turn coil on a copper pipe.
Hahn et al. [7] have studied oscillations of a magnet attached inside a spring
and driven within pipes of different dimension and conductivity through reso-
nance. Their theory is similar to [3, 5], but they took into account finite length
of the pipe. Nowadays a variant of the experiment is available commercially
(see http://www.exploratorium.edu/snacks/eddy currents.html).

Magnetic braking experiment is used at Novosibirsk State University for
many years as a lecture demonstration [10]. When we decided in 2002 to
extend the existing set of student experiments adding an experiment with
eddy currents, we had reviewed the earlier papers and experimental versions.
The review reveals that previous theoretical analysis, besides commonly em-
ployed modeling a short magnet as a point magnetic dipole, considered only
the case when the skin depth δ is much greater than the wall thickness h,
and magnetic permeability of the pipe is equal to unity, µ = 1. These two
assumptions can appear not to be valid for many practical situations. It
was a reason for development of a general theory for a short magnet moving
through a conducting pipe with arbitrary velocity.

The review shows also that in the previous experiments with falling mag-
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net all features of this phenomenon cannot be demonstrated. For example,
the dynamics of braking was not recorded but only the terminal velocity of
the magnet can be measured. The other interesting question, having high
education value and was not considered previously, is how the magnet moves
through a pipe with a crack or a cut? Will it be the free fall? To our knowl-
edge nobody has analyzed such situation. In this paper we have studied these
problems both experimentally and theoretically.

2 The theory

Although a general theory to be described in sec. 2.3 does not need any
preliminary assumption on how large is the ratio δ/h, we first describe two
limits, δ/h � 1 and δ/h � 1, and then only we come to the general case. Such
approach allows to disclose more clearly the mechanism of the phenomenon
and is more instructive for tutorial.

In the next section we reproduce standard theory of the braking exper-
iment valid for low velocities. In sec. 2.2 we consider opposite case of very
fast motion of point magnet in conducting pipe and show that the retarding
force scales as v−1/2 in this case. Then, in sec. 2.3, we develop general theory,
which reveals existence of intermediate asymptotes where the force scales as
v−1. In the last theoretical section we present a solution for a pipe with a
long axial slit.

2.1 Weak skin-effect approximation

When a magnet moves through a pipe in the axial direction, local variation
of the magnetic flux induces eddy currents flowing in the azimuthal, or α-,
direction (figure 1, a). The induced currents create non-uniform magnetic
field, which acts back on the magnet with the force

F = (m · ∇)B , (1)

where m is a dipole magnetic moment. The force is directed against the
velocity of the magnet and, thus, it retards the motion. Further, for defi-
niteness, we refer to the case of falling magnet in gravity field, although the
driving force can be of arbitrary nature. Since the retarding force grows as
the velocity increases, the magnet reaches eventually a constant velocity at
which the retarding force exactly compensates the gravity force.

As stated above, most previous studies of the braking experiment were
bounded to a particular case of steady fall. It was usually adopted, explicitly

4



a b

j

z z

j

j j

��

Figure 1: Schematics for the magnet dropping down through a whole (a) and
a cut (b) conducting pipe.

or implicitly, that the pipe almost does not perturb the magnetic field of the
falling magnet, which, in turn, can be calculated as if the magnet was falling
in free space. This assumption is valid 1) for a pipe made of non-magnetic
material and 2) for a relatively low velocity v of the motion when the effective
skin-depth δ = c/

√
2πσω, evaluated for the characteristic frequency ω ∼ v/a,

is greater than the radius a of the pipe; a more accurate criterium will be
formulated later. Our derivation in this section is close to that used in [3]
but we modified it to make bridge to the next section, where we consider the
case of the strong skin-effect.

Let a spot magnetic dipole m is directed along the axis z of the circular
pipe with the inner radius a and the outer radius b. We assume and that
the dipole moves along the axis r = 0 and zm(t) denotes its position at the
instant of time t. The axial symmetry of the problem allows to choose such a
gauge that the scalar potential φ is zero everywhere, and the vector potential
A has only the azimuthal component, A = Aα(r, z, t) eα. Then non-zero
components of the electromagnetic field are

Br = −∂Aα

∂z
, Bz =

1
r

∂Aα

∂r
, Eα = −1

c

∂Aα

∂t
. (2)

If the skin-effect is weak, the magnetic field of the magnet is almost not
perturbed by the conducting wall of the pipe provided that the wall is made
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of non-magnetic material, i. e. µ = 1. In the latter case, the vector potential
can be calculated within the framework of quasi-static approximation:

Aα(r, z, t) =
mr

[r2 + (z − zm)2]3/2
. (3)

Noting that ∂Aα/∂t = −żm ∂Aα/∂z, one can readily find the induced electric
field Eα within the conducting wall of the pipe. The field drives the eddy
current jα = σEα that produces “secondary” magnetic field. At the axis z,
the magnetic field has only z-component:

Bz(0, z) =
1
c

L/2∫
−L/2

dz′
b∫

a

dr′
2πr′2 jα(r′, z′)

[r′2 + (z − z′)2]3/2
,

where ±L/2 are the z coordinates of the ends of the pipe. Differentiating
the integrand in the above equation over z and then equating z to zm(t), one
can calculate the gradient of the field at the point of location of the dipole.
Multiplying the result by m, we obtain the retarding force:

F = −18πσm2v

c2

L/2∫
−L/2

dz′
b∫

a

dr′
r′3 (zm − z′)2

[r′2 + (zm − z′)2]5
, (4)

where v = żm stands for the velocity of the magnet. The force does not
depend on the coordinate zm of the dipole if the latter is located far enough
from an end of the pipe. If |zm ± L/2| � a, equation (4) reduces to

F = −15π2σm2v

64c2

(
1
a3

− 1
b3

)
. (5)

For a thin pipe, b−a � a, it reduces even further to the earlier known result
of Ref. [3]:

F = −45π2

64
σm2v h

a4c2
. (6)

The minus sign here indicates that the force is directed against the velocity
of the magnet which justifies the name of the retarding force.

The retarding force can be calculated also from the energy balance treat-
ment. Indeed, the power P , dissipated within conducting wall of the pipe to
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the minus sign is equal to the work A = vF executed by the force per unit
of time, −A = P , and

P =
∫ L/2

−L/2

dz′
∫ b

a

d� 2π � σE2
α(�, z′) .

Evaluating the electric field Eα with the use of equations (2) and (3) and
dividing the result by −v yields the equation (5) once again. We shall use
this latter approach in the next Section to compute retarding force in the
limit of fast motion of the magnet.

2.2 Strong skin-effect approximation

Let the velocity of the magnet be so large that the skin depth δ = c/
√

2πσµω,
evaluated at the characteristic frequency ω ∼ v/a, is small in comparison with
the thickness h of the pipe wall, δ � h. To reach such velocity the magnet has
to be accelerated by a force different from the gravity one, e. g. in a pneumatic
gun or with a spring. The magnetic flux of the magnet in this case is trapped
completely inside the pipe, and the eddy currents significantly perturb the
magnetic field no matter whether magnetic permeability µ is equal to 1 or
not.

Since the motion of the magnet is non-relativistic in any case, v � c,
the magnetic field can still be found with the use of quasi-static approach.
It means that the vector potential Aα = Aα(r, z − vt) depends on the time
t only through the combination z − vt, provide that the dipole is located
somewhere far enough from the ends; then Eα = (v/c)∂Aα/∂z.

At first, we assume that δ = 0, and, consequently, E = B = 0 inside
the pipe wall as well as outside the pipe. Appropriate solution of Maxwell’s
equation for the interior of the pipe is then subject to the boundary conditions
Eα = Br = 0 at the inner radius a of the pipe. In the interior of the pipe,
r < a, the vector potential obeys the equation

∂

∂r

1
r

∂

∂r
rAα +

∂2

∂z2
Aα = 0 (7)

that follows from the static equation ∇ × B = 0 for the magnetic field.
Eq. (7) has two linear independent particular solutions I1(|kr|) exp(ikz) and
K1(|kr|) exp(ikz), where Im and Km are modified Bessel functions of first
and second kind, respectively, of the order m [11]. Since

r

(r2 + z2)3/2
=

2
π

∫ ∞

0

dk k cos(kz) K1(kr)
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the magnetic potential Aα inside the pipe, at r < a, can be written in the
form

Aα =
2m

π

∫ ∞

0

dk k cos(kz − kvt) [K1(kr) + αk I1(kr)] . (8)

The first terms in the brackets is singular at the point where the spot magnetic
dipole is located; it yields the magnetic potential of the magnetic dipole in
free space. The second term is regular, and the coefficient αk can be found
from the boundary condition Aα = 0 at r = a:

αk = −K1(ka)/ I1(ka) .

To find the retarding force at this step it is sufficient to calculate the total
power P dissipated within the wall and equate it to the work −v F of the
retarding force F per unit of time. Dissipated power is equal to the energy
flux

P = 2πa

∫ ∞

−∞
Sr dz (9)

across the entire surface of the inner boundary of the pipe wall, where Sr =
(c/4π)EαHz is the radial component of the Pointing vector at r = a. However
straightforward calculation shows that P = 0 in the current approximation
since Eα = 0 at r = a and, hence, there is no net energy transfer into the wall.
It means that the retarding force disappears when σ → ∞ in accordance with
a common sense, but in contrast to the result of previous section, which is,
thus, valid for relatively slow motion and/or low conductivity.

To accomplish the effect of finite conductivity it is sufficient to use Leon-
tovich boundary condition at the wall surface to relate Eα with Hz. Accord-
ing to Leontovich [12], Fourier amplitude Eαω =

∫ ∞
−∞ Eα exp(iωt) dt of the

electric field is equal to that of the magnetic field, Bzω =
∫ ∞
−∞ Bz exp(iωt) dt,

times the surface impedance:

Eαω = [1 − sign(ω)]

√
µ|ω|
8πσ

Bzω . (10)

The Fourier component of magnetic field is easily calculated with the use of
the longitudinal magnetic field evaluated at r = a for the case σ → ∞:

Bz = −2m

π

∫ ∞

0

dk k

a I1(ka)
cos(kz − kzm) .
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This yields

Bzω = − 2m|k|
av I1(|ka|) exp(−ikz), (11)

where k = ω/v. Using the spectrum theorem for the Fourier amplitudes we
express the power dissipated within the wall through the Fourier amplitude
of the magnetic field Bzω at the wall:

P = −acv

2π

∫ ∞

0

dω

√
µω

8πσ
|Bzω(a)|2 .

Inserting here Eq. (11) and dividing the result by −v yields the retarding
force:

F = − m2c
√

µ√
2π3vσa9

∫ ∞

0

dξ
ξ5/2

I21(ξ)
= −3.45 m2c

√
µ√

4π vσa9
. (12)

Since the force diminishes as v increases, F ∝ v−1/2, the motion of the mag-
net is unstable because an occasional increase in the velocity would leads
to unlimited acceleration. Similar phenomenon is well known in the plasma
physics where high-energy particles are accelerated without limit by an exter-
nal electric field since friction force is a decreasing function of the particles’
velocity. In the next Section we shall see that there is an intermediate as-
ymptotes F ∝ v−1 in the range 1 � δ/h � a/µδ.

2.3 Exact solution

With minor amendments, the method of preceding section can be used to
calculate the retarding force in the entire range of parameters of interest.

To derive a general formula, it is sufficient to rewrite eq. (8) in the form

Aα(r, z − vt) =
m

π

∫ ∞

−∞
dk exp[ik(z − vt)] |k|[K1(|kr|) + αk I1(|kr|)] (13)

assuming that the coefficient αk can acquire complex values in the interior
part of the pipe, r < a. Similar expansions should be written for other regions
of the space since in a general case the electromagnetic field diffuses outside
the pipe through conducting wall. Outside the pipe, r > b, one has to keep
only the terms which disappear at r → ∞:

Aα(r, z − vt) =
m

π

∫ ∞

−∞
dk exp[ik(z − vt)] βk |k| K1(|kr|) . (14)
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Inside the conducting walls, a < r < b, the vector potential obeys the equa-
tion

∂

∂r

1
r

∂

∂r
rAα +

∂2

∂z2
Aα = −4πσµ

c2

∂Aα

∂t
, (15)

as follows from the equations ∇ × H = 4πj/c, ∇ × E = −(1/c)(∂/∂t)B,
j = σE and B = µH. Solution of the equation can be cast into the form

Aα(r, z) =
m

π

∫ ∞

−∞
dk exp[ik(z − vt)] |k| [µk I1(κr) + νk K1(κr)] , (16)

where κ =
√

k2 − 4πikvσµ/c2.
The coefficients αk, βk, µk, νk are to be found from the boundary condi-

tions at the inner, r = a, and at the outer radius of the wall, r = b. These
conditions imply the continuity of Aα and its derivative ∂Aα/∂r at both sur-
faces. To calculate the retarding force one needs only to know the coefficient
αk since

F =
m2

π

∫ ∞

0

dk ik3 [αk − α−k] . (17)

Simple calculation yields

αk = −K+(a)K−(b) − K−(a)K+(b)
I−(a)K−(b) − I+(a)K+(b)

, (18)

where

K+(r) = κ I0(κr)K1(|k|r) + µ |k| I1(κr)K0(|k|r) ,

K−(r) = κ K0(κr)K1(|k|r) − µ |k|K1(κr)K0(|k|r) ,

I+(r) = κ K0(κr) I1(|k|r) + µ |k|K1(κr) I0(|k|r) ,

I−(r) = κ I0(κr) I1(|k|r) − µ |k| I1(κr) I0(|k|r) .

Results of preceding sections, Eqs. (5) and (12), can be recovered from
general solution (17) in appropriate limiting cases, though the reduction of
(17) is not a trivial task. To derive new results, not discussed earlier, we
represent the friction force (17) in the parametric form:

F = −m2

a4
F(µ, ε, η), (19)

where the function F depends on the three dimensionless parameters: µ,
ε = (b − a)/a and η = 4πσva/c2.
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Figure 2: Function F vs µ for η � 1.

In the case η � 1, which corresponds to the low velocity limit analyzed
in Sec. 2.1 with additional assumption µ = 1, general formula (17) can be
reduced to comprehensible expression for arbitrary µ if the pipe wall is thick
enough, i. e., ε � 1:

F =
η

π

∫ ∞

0

µ2x4[K2(x)K0(x) − K2
1(x)]

[1 + (µ − 1)x I0(x)K1(x)]2
. (20)

The function (20) is plotted in figure 2. At µ = 1 integration in (20) yields
F = (15π/256)η ≈ 0.184η in agreement with (5). At large µ the function
(20) tends to the value F ≈ 0.359η which is almost 2 times larger. If ε � 1
one can use the result of Sec. 2.1 since eq. (6) appears to be valid for arbitrary
µ. In dimensionless variables eq. (6) takes the form:

F =
45π

256
εη ≈ 0.552 εη. (21)

The friction force is evidently not very sensitive to the magnetic properties
of the pipe wall in the case of slow motion. Apparently, this assertion is valid
for an ideal case of the magnet movement precisely along the symmetry axis.
Any deviation must lead to the attraction of the magnet to the ferromagnetic
wall.

The opposite case of fast motion, analyzed in sec. 2.2, occurs if εη �
1/(µε). Then

F =
√

2µ

π
√

η

∫ ∞

0

dξ ξ5/2

I21(ξ)
≈ 3.45

√
µ

η
(22)

in agreement with (12).
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The two cases (21) and (22) do not match each other since there is an
intermediate interval of parameters, 1 � εη � 1/(µε), where the friction
force scales as v−1:

F =
2

πεη

∫ ∞

0

dξ ξ2

I21(ξ)
≈ 4.78

εη
. (23)

The interval exists if ε � 1/µ. Within the interval, the width h = b − a of
the pipe wall is smaller then the skin-depth, h � δ, but exceeds some value,
h � δ2µ/a. The same ordering characterizes the case, when a conducting
cylinder effectively screens the electromagnetic field even if δ � h [13, 14].

The diagram in figure 3 illustrates the feasibility of the scalings (22) and
(23) for various materials. For a copper pipe with h/a = 0.25 the scaling
F ∝ v−1/2 takes place for va ∼ 104 cm2/s, but F ∝ v−1 for va ∼ 2·103 cm2/s
or less. For a = 0.665 cm necessary velocities are 200 m/s and 40 m/s,
respectively. For a thick copper pipe with h = 2.5 mm and average radius
R = (a+b)/2 = 4 mm the velocities reduce to 40 m/s and 6 m/s, respectively.
Such values can be readily achieved in a simple student experiment.

h/a0.50.10.05
10

2

10
3

10
4

10
5

a

Figure 3: Regions with distinct func-
tional dependence F (v). For a se-
lected material of the wall (tita-
nium or cooper), the region be-
tween straight lines corresponds to
the scaling F ∝ v−1/2, whereas F ∝
v below the lower line, and F ∝ v−1

above the upper line.

Figure 4: Retarding force for a con-
ducting pipe with thin walls. Dashed
line shows approximate solution (24)
valid in the limit ε → 0 in the en-
tire range εη � 1/(µε). Solid lines
show exact solutions at µ = 1 for two
values of ε: ε = 0.1 (upper curve)
and ε = 0.01 (very close to dashed
curve).
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The entire range εη � 1/(µε) is covered by the formula

F =
2εη

π

∫ ∞

0

dξ ξ4 K2
1(ξ)

1 + ε2η2ξ2 I21(ξ)K2
1(ξ)

. (24)

It can be derived from “first principles” if one neglects the variation of Aα

(and hence variation of current density) across the pipe wall. To obtain
(24), it is sufficient to treat the pipe wall as infinitesimally thin circular layer
and match the solutions inside (34) and outside the pipe (35) through the
boundary conditions Eα(a +0)−Eα(a− 0) = 0 and Bz(a +0)−Bz(a− 0) =
−4πI/c, where I = σhEα(a) is the total current per unit length of the pipe
wall. The function (24) is plotted in figure 4.

Note that for a thin wall, ε � 1, the friction force is not sensitive to the
magnetic properties of the pipe wall (i.e., to the magnitude of µ) and depends
on the other two parameters ε, η only through their product if εη � 1. It
reaches maximal magnitude F = 0.704 at εη = 2.69.

To build up a bridge to experiment we restrict ourselves below to the case,
comprehensively described by eq. (24), assuming that ε � 1 and εη � 1/(µε).
In dimensional units these inequalities are transformed into h � a and h � δ,
respectively, where δ ∼ c/

√
2πσµv/a.

2.4 Pipe with longitudinal slit

The longitudinal slit tears azimuthal current circulating within a pipe wall.
However there are two effects that sustain the current. First of all, the
displacement current −(1/c)∂E/∂t is capable, in principle, to shorten con-
ductivity current across the slit but this effect is negligible at low velocities.
Second effect is more important. Since the eddy currents, driven by e.m.f.,
are directed in opposite directions in front of moving magnet and behind the
magnet (see figure 1), they can re-connect to each other along the slit shores.
In the quasi-static approximation no net electric charge is induced in the bulk
of the conducting wall, but the electric charge has to be distributed over the
surface of the wall to provide closing of the current.

Within the wall

E =
v

c

∂Aα

∂z
eα −∇φ, (25)

where Aα = mr/[r2+(z−vt)2]3/2 is the vector potential of the spot magnetic
dipole m in free space, and φ is the scalar (electric) potential induced by the
surface charges. The potential φ obeys the Laplace’s equation ∆φ = 0 in
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the bulk of the wall. For a thin wall, h � a, the Laplace’s equation can be
considerably simplified since there is no radial electric field within the wall,
∂φ/∂r = 0. Thus, we have the equation

1
a2

∂2φ

∂α2
+

∂2φ

∂z2
= 0, (26)

where we have substituted the variable r with the pipe radius a. The absence
of the radial electric field follows from the boundary condition for the density
current

j = σE (27)

that must disappear at the boundary of conducting material as long as one
can neglect the displacement current. We seek the solution of eq. (26) in the
form

φ(α, z) =
∫ ∞

0

dk sin(kz − kvt) [µk exp(kaα) + νk exp(−kaα)] , (28)

where the coefficients µk, νk are to be found from the boundary condition
for the density current which states that jα = 0 at both edges of the slit.

We denote the angle width of the slit by ∆α (see figure 1) and assume
that the edges of the slit are located at α = ±(π − ∆α/2). This yields

µk = −νk = −mv

πc

k K1(ka)
cosh[(π − ∆α/2)ka]

. (29)

Power dissipated within the conducting wall is equal to

P = h

∫ π−∆α/2

−π+∆α/2

dα a

∫ ∞

−∞
dz [j2

α + j2
z ]/σ , (30)

where the components jα, jz of the current density can be readily found by
combining Eqs. (27), (25), (28), and (29):

jα =
2mσv

πc

∫ ∞

0

dk k2 K1(ka) sin[k(z − vt)]
cosh[kaα] − cosh[(π − ∆α/2)ka]

cosh[(π − ∆α/2)ka]
,

jz =
2mσv

πc

∫ ∞

0

dk k2 K1(ka) cos[k(z − vt)]
sinh[kaα]

cosh[(π − ∆α/2)ka]
.

(31)
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Figure 5: The function Q(∆α) (solid line) and its linear approximation
(dashed line).

Integration over z and α in Eq. (30) can be done in a closed form. Dividing
the result by −v, we find the retarding force:

F = −45π

256
Q(π − ∆α/2) εη , (32)

where

Q(β) =
512
45π3

∫ ∞

0

dξ ξ3 K2
1(ξ) [βξ − tanh(βξ)] .

The function Q(π −∆α/2) gives the ratio of the retarding forces in the pipe
with and without a slit; it is plotted in figure 5. With accuracy to within few
percent it can be approximated by a linear function

Q(π − ∆α/2) ≈ 0.77 − 0.16∆α , (33)

if ∆α � 3π/2.

3 The experiment

We have studied a magnet falling down through vertical conducting pipes
in the gravity field. This experiment corresponds to the slow velocity case,
η � 1.

Experimental setup consists of a set of vertical pipes with the length
L = 90 cm made of copper, aluminum alloy, brass, titanium and a glass pipe
for reference. The pipes were taken from the stock and have no certificates.
Pipe dimensions are given in table 1. A cylindrical neodymium-iron-boron
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Table 1: Pipe characteristics (outer and inner diameters, 2a and 2b, aperture
angle, ∆α, and the conductivity, σ) and main experimental results. Val-
ues of the conductivity σ for copper and titanium are taken from standard
tables. Conductivities for aluminium alloy and brass are calculated using
equation (36). The friction coefficients β, initial velocity v1 of the magnet at
first measuring coil and the magnetic moment mt are obtained with the use
of time-flight fitting procedure, based on equation (35). The magnitude of v1

is shown in bold figures if it is equal to the terminal velocity v∞. Magnetic
moment mU is obtained in the result of fitting experimental oscillograms with
calculated voltage (37).

Cu Al Al Al Brass Ti Glass

∆α, rad none none 0.32 π/4 none none none
2a, mm 11.6 12.4 12.4 12.4 11.7 11.9 11.8
2b, mm 15.0 16.0 16.0 16.0 13.9 14.3 15.0
σ, 1017 s−1 5.27 1.74 1. 35 0.192 -
β, s−1 143. 38.0 31.3 23.0 27.2 3.8 0.137
v1 (v∞), cm s−1 6.85 25.8 31.3 42.6 36.1 116. 140.1

mt, g1/2 cm5/2 s−1 474 ± 2 - - - - 465 ± 5 -

mU , g1/2 cm5/2 s−1 433 429 - - 425 436 429

magnet with a diameter of 1 cm and a length of 1 cm is magnetized along the
axis. The magnet starts at zero velocity from the upper end of a pipe. Seven
20-turn coils, each 8 mm in length, are connected in series and winded on the
outer surface of the pipes with a period of 10 cm. The coil series is connected
to a digital Tektronix TDS-220 oscilloscope coupled to PC.

3.1 Falling of the magnet through a whole pipe

Voltage U(t) vs. time from the coil series for glass, titanium and aluminum
alloy pipes are shown in figure 6. It is clear that the signals are proportional
to eddy currents at the outer surface of the pipe wall. The spikes on the
oscillograms are evidently produced by e.m.f. induced in the coil, nearest to
an instant position of the falling magnet. Since U(t) = 0 when the magnet
passes the center of a coil, the time of flight from a coil to a neighboring coil
can be readily determined from the oscillograms. The result of the time-flight
processing is shown in figure 7, where the time of flight through the upper
measuring coil is taken to be zero. The t−z diagram is plotted by averag-
ing over 12 individual experiments for each pipe. Experimental errors are
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Figure 6: Voltage induced in the measuring coil series: a—glass, b—titanium,
c—aluminum alloy, d—aluminum alloy with a longitudinal cut ∆α = π/2.
A series of 7 coils is wound on every pipe with the period 10 cm. The os-
cillograms for the copper, brass, and aluminum alloy (∆α = 0.32) pipes are
similar to the oscillograms c and d.

negligible in comparison with the point size. For the copper pipe, possessing
the best conductivity, the magnet passes 70 cm for about 9 s, a while very
impressive for public demonstrations. Electrical conductivity of the titanium
pipe is 20 time less, and time of flight diminishes to 0.35 s. The skin depth δ
evaluated at the characteristic frequency ω ∼ v/a for all the pipes is equal or
even exceeds few centimeters, which justifies the use of the weak skin-effect
approximation in the calculations below. In this approximation, the retard-
ing force can be written as F = −βMżm, where β is the magnetic friction
coefficient, M = 5.5 g is the mass, and zm(t) is an instant coordinate of the
magnet. Solving the equation of motion for the magnet in the gravity field

z̈m(t) + βżm(t) = g , (34)
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Figure 7: Transit time vs. coordinates of measuring coils. Circles denote
instants of time when the magnet passes through a measuring coil. Solid
curves designate theoretical trajectory (34) fitted over the friction coefficient
β and initial velocity v1. The curve FF for the glass pipe with high accuracy
corresponds to the free fall. The other curves correspond to the motion with
constant velocity, besides the curve FC for titanium pipe that exhibits the
intermediate case of slowing descending.

with the initial conditions zm(0) = 0, żm(0) = v1 yields

zm(t) =
gt

β
− g − βv1

β2
[1 − exp(−βt)] , (35)

where v1 is the velocity of the magnet at the center of the first coil.
We used the equation (34) to fit the experimental data shown in figure 7.

Excepting titanium and glass pipes, the experimental data fit the straight
line t = z/v∞, because the magnet brakes down to the terminal velocity
v∞ = g/β very soon after entry into the highly conducting pipes before it
reach the first measuring coil; for such pipes v1 = v∞. The magnet falls down
practically free through the glass tube as the fitting curve FF demonstrates
in figure 7. The curve FC for titanium exhibits intermediate case when all
the term in the equation (34) are equally important.
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Having found the friction coefficients β, one can readily calculate the
magnetic dipole moment, if the electrical conductivity of the pipe is known,
since

mt =

√
64βMR4c2

45π2σh
(36)

as follows from the equation (6).
Compiling data for conductivity from many standard tables, we assume

the conductivities to be σ = (5.27 ± 0.03) · 1017 s−1 for copper and σ =
(1.92 ± 0.04) · 1016 s−1 for titanium. Calculated magnitude of the magnetic
momentum mt are given in table 1; the two values of mt for the copper
and titanium pipes reasonably fit each other. Note however that statistical
dispersion of the calculated magnetic moment mt is less than the uncertainty
in the used conductivity values.

Inserting the average value of the calculated magnetic momentum 〈mt〉 =
(169.5 ± 5.5) g1/2 cm5/2 s−1 in Eq. (36), we have calculated the conductivity
for other non-cut pipes. The values σ = 1.35 · 1017 s−1 for brass and σ =
1.74 · 1017 s−1 for aluminum alloy, found in this way, are within the ranges
of the conductivity for these materials, given in many handbooks.

Last line in the table contains the values of the magnetic moment mU

calculated with the use of an alternative method. In this method, an exper-
imental oscillogram is approximated by the calculated voltage

U(t) =
6πmρ

c
żm(t)

7∑
i=1

20∑
j=1

ρ(zm(t) − zij)

[(zm(t) − zij)2 + ρ2]5/2
, (37)

where ρ = b+d/2 is a coil radius, d is the wire diameter, zij is the coordinate
of a coil turn, and zm(t) is the coordinate of the magnet as a function of time
obtained in the result the fitting procedure, described above. The summation
in (37) goes over every of seven coils with 20 turns each. For the given function
zm(t), the voltage function (37) contains single fitting parameter m. This
fact drastically simplifies fitting procedure, which incidently does not require
knowledge of the conductivity of the material. The described procedure yields
practically identical values of mU for all the pipes presented in table 1, from
copper one to glass. However average value 〈mU 〉 of mU is 10% less than 〈mt〉.
Second method that yields mU is supposed to be more reliable since it is based
of less number of assumptions and gives consistent results independently on
whether braking is effective (for the good conductors) or not (for the glass
pipe).

19



3.2 Falling of the magnet through a pipe
with longitudinal slit

When a pipe has a longitudinal crack or cut, eddy current distribution in the
wall drastically change. As it was shown in sect. 2.4, eddy currents below
and above the magnet, which are separate in the whole pipe, form in the cut
pipe the configuration drawn in figure 1,b. As a consequence, the retarding
force decreases. According to (32) and (33), the friction coefficient β for
the aluminum alloy pipes with narrow (∆α = 0.32) and wide (∆α = π/4)
slits should have the magnitude βth = 27.6 s−1 and 20.4 s−1, respectively.
However, experimental values are (10–15)% greater (see table 1).

A simple explanation suggests itself “by ear”. One hears a specific raspy
sound when the magnet descends inside the pipe with slit, while no sound
is heard when the magnet falls throughout the uncut pipe. This means that
the magnet scratches the inner surface of the wall if there is a slit cut but
otherwise does not touch the wall. Since the slit breaks azimuthal symmetry
of the pipe, the eddy currents flowing along the opposite edges of the slit
create magnetic field B⊥ directed to the slit at instant position of the magnet.
The field yields the torque K = m × B⊥, which rotates the magnet in the
plane passing from the center of the magnet to the middle of the slit. Since
the diameter of the magnet was merely two millimeter smaller than the inner
diameter of the pipe, the torque presses opposite edges of the magnet to
the inner surface of the wall, and total retarding exceeds the friction force
predicted by equation (32).

To demonstrate this effect we cut four slots with the length of 12 cm in a
long aluminum pipe with the total length 110 cm alternated with
12-cm uncut sections. The slots had different angular widths, sequentially
∆α/π = 0.2, 0.1, 0.05, 0.025. Twenty seven measuring coils were wound in se-
ries on the pipe with 4-cm period. Characteristic oscillogram and the magnet
velocity as function of time are shown in figure 8. Movement of the magnet
in this pipe is rather slow, and the experiment gives clear evidence that the
raspy sound appears, when the magnet passes the slots, and disappears, when
the magnet is in the uncut sections. The magnet terminal velocity keeps a
constant value within all uncut sections, but in the cut sections velocity is
not monotonically decreases for the subsequently narrowing slots, as one can
expect from Eq. (32) ignoring additional wall friction.

Total retarding force in the cut section is the sum of magnetic braking and
mechanical wall friction. We suggest that non-monotonicity of the measured
retarding force is explained by non-monotonic dependance of the torque K
on the slit width. Using the solution (31) for current in the pipe wall one can
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Figure 8: Falling of the magnet in the pipe with sequence of longitudinal slots:
(a) oscillogram of the signal from the series of 27 measuring coils; (b) magnet
velocity vs. time retrieved from the oscillogram. When the pipe is rotated
by 180◦ around a horizontal direction, the oscillogram remains absolutely the
same with t-axis directed from right to left.

find that

K =
m2

a3

45π

256
K(

π − 1
2∆α

)
εη , (38)

where

K(χ) =
512
45π3

∫ ∞

0

dy
y3

1 + y2
K1(y) [y K0(y) + K1(y)] [y sin χ − cosχ tanh(χy)] .

A ratio of the pressure force, which acts on the wall at each side of the
magnet, to the retarding force (21), which acts on the magnet in the whole
pipe, is proportional to the function K. Mechanical friction force F = kN is
proportional to N and corresponding friction coefficient k which is usually less
than unity, k < 1. As it is seen from figure 9, the torque reaches maximum
at ∆α = 0.53π = 96◦. Depending of the value of k, the maximum of the
total retarding force can be reached at a smaller angular width of the slit.
Such peculiarity may qualitatively explain velocity variations observed in our
experiment with the multi-slot pipe. Other effect that also may increase the
friction force is increasing the magnet rotation angle with cut widening.
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4 Conclusion

Thoroughly investigation of the problem of magnet braking in a conducting
pipe appears to be much more instructive than it is usually thought of. We
found that apart the regime of slow motion, characterized by linear propor-
tionality of the retarding to the magnet speed, there are two more regimes,
where the force decreases as the velocity grows. Similar phenomenon in
plasma physics is known to lead to unlimited acceleration of fast electrons in
current-carrying plasma.

Performed experiments showed that magnet braking can be used for de-
tection of cracks in the pipes. They also revealed a peculiarity in the depen-
dance of velocity on the slit width. The peculiarity appears due to rotation
of the magnet in the magnetic field, perturbed by the axial component of
eddy current on opposite shores of the slit.

Thus, a simple magnet braking experiment can be used to introduce stu-
dents into entirely new field of study. It can be useful at different levels
of education, from beginners to postgraduates. One can suggest even more
sophisticated experiments on magnetic braking than it is usually done. In
particular, new theoretically predicted regimes, where the retarding force is
a decreasing function of the magnet speed, are still subject to experimental
proof.
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