
Siberian Branch of Russian Academy of Science

BUDKER INSTITUTE OF NUCLEAR PHYSICS

S.A. Nikitin, A.B. Temnykh

STUDY
OF INTRA-BEAM SCATTERING EFFECT

AT CESR AND VEPP-4M STORAGE RINGS
AT 1.8 GeV ENERGY

Budker INP 2004-56

Novosibirsk
2004



Study of intra-beam scattering effect
at CESR and VEPP-4 storage rings

at 1.8 GeV energy

S.A. Nikitin
Budker Institute of Nuclear Physics

630090 Novosibirsk, RF

A.B. Temnykh

Cornell University, Ithaca, USA

Abstract

Intra-beam scattering (IBS) phenomena can cause significant parti-
cle loss rate from the beam as well as the beam transverse emmitances
and energy spread grow. In the present paper we briefly describe mod-
ified method for calculation of beam particles loss rate. The method
takes into account two-dimensional character of collisions of particles
inside beam. Results of calculation are compared with experimental
data from two electron-positron colliders: CESR (Cornell University,
USA) and VEPP-4M (BINP, Novosibirsk, Russia).
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1 Introduction
Intra-beam scattering (IBS) processes1 may cause a significant particle loss
rate resulted in an unacceptable short beam lifetime. The beam emittances
can be affected by IBS too. Because these processes become stronger at
low energy, it is of great concern in relation to plan of CESR to operate at
1.8 GeV energy.

In the present paper we are following the well-known theory of IBS de-
scribed in [1]. However, there are two specifics. First, we take into account
two-dimensional character of collisions of particles inside beam, i.e., in addi-
tion to the transverse momentum distribution in horizontal plane we consider
the distribution in vertical plane too. This allows us to avoid assumption
about beam flatness. Two dimensional approach has been considered earlier
on in [2, 3, 4]. The second specific is the way we determine energy aperture.
In IBS theory, the energy aperture is defined as the maximum energy de-
viation of the beam particle caused by the IBS event at which the particle
motion is still stable and the particle does not interact with vacuum pipe
walls. Note that, if occurred in location with dispersion, IBS excites beta-
tron oscillations in addition to synchrotron motion. The energy aperture will
be equal to the RF buckets height, if the latter measured in beam energy
units is smaller than a half of the ratio between aperture available for hor-
izontal motion and the dispersion (see the exact expression in text below).
In this case, which is applicable to VEPP-4M collider, energy aperture can
be accurately calculated from the well-measured or well-defined parameters.
At CESR we have an opposite situation. Both the high RF voltage needed
for bunch shortening and the large closed orbit distortion required for the
multi-bunch collision operation make the RF bucket higher and the space
available for horizontal motion smaller. In result, the RF bucket is larger
than the space available for horizontal motion. In this case the energy aper-
ture will depend on betatron motion and may be affected by many factors
such as nonlinearities of the leading magnetic field, proximity of betatron

1For electron storage rings it is known as Toushek effect
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tunes to resonance conditions, coupling between betatron motion in vertical
and horizontal planes and etc. Because it is impossible to take into account
all the above effects in analytical calculation we use tracking.

In Section 2 we consider the method and in Section 3 we present details
and result of tracking used for energy aperture simulation. Description of
experimental data obtained on CESR and VEPP-4 electron-positron colliders
and comparison with calculation result are given in Section 4 and 5. In
Section 6 we give a brief summary.

2 Method for calculation of Touschek effects
The method which is briefly described below has been developed in [4]. In
fact, basing on theory given in [1] it expands one-dimensional (flat beam) ap-
proximation used in [1] into theory which takes into account two-dimensional
character of two-particle Coulomb interaction inside a bunch.

To describe two-dimensional character of motion let’s introduce the in-
teraction parameter: k = σX′/σY ′ , where σX′ and σY ′ are respectively the
spreads of trajectory angles in the horizontal plane (X) and vertical one (Y ).
The contribution to the transverse velocity from the dispersion function is
neglected as well as in [1]. In the so-called "round" beam k → 1 and in the
flat one k → ∞. The modified function of distribution as to momentum (p)
in the center-of-mass system (CMS) has the following form [4]:

f(k, p)dp =
2kp
σ2

p

· S(w, k)dp, (p > 0) ,

S(w, k) = exp
[
−w

2
(1 + k2)

]
I0

[w
2
(1− k2)

]
.

Here p = mν/2, the momentum in CMS (similarly to [1], we use the non-
relativistic description of motion in CMS); m is the rest electron mass; ν
is the relative velocity of colliding particles inside a beam (ν2 = ν2

X + ν2
Y );

w = p2/σ2
p; σp = mcγ

√
σ2

X′ + σ2
Y ′ , the transverse momentum spread in a

beam; c is the speed of light; γ is the Lorentz factor; I0(x) is the modified
Bessel function.

At k → ∞ the distribution function approaches the form corresponding
to the one-dimensional collision case [4]:

f(p)dp =
2√
πσp

exp
(
− p

2

σ2
p

)
dp, (p > 0).
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At k → 1 the distribution becomes the two-dimensional Maxwell one:

f(p) ∝ p · exp (−p2/σp).

The use of the modified distribution function changes the forms of universal
characteristic functions which describe the diffusion rate and the losses rate
in the theory of IBS [4].

The determinative process in the integrated Touschek effect is the multiple
scattering provided the latter significantly contributes to the energy diffusion
in compare with the synchrotron radiation (SR). Losses of particles (beam
lifetime) due to single scattering depend on the steady beam dimensions
determined by the total (SR + IBS) diffusion rate, radiative damping and
betatron coupling. For the storage rings like CESR and VEPP-4M, it would
suffice to describe the betatron coupling in the “ weak coupling” terms when
the beam cross section tilt is mostly negligible and the basic parameter is the
ratio between the vertical (EY ) and horizontal emittances (EX): æ = EY /EX .

Let denote
u = (σγ/γ)2 = uQ + uT

– the squared relative energy dispersion;

v = EX = vQ + vT

– the radial phase volume;

k =
√
(1 + α2

X)βY /(æ(1 + α2
Y )βX);

H = [η2
X + (βXη

′
X + αXηX)2]/βX

– the function describing the excitation of radial betatron oscillation due to
an instant change in a particle energy; σZ = Rα

√
u/QS – the longitudinal

beam size, QS – the synchrotron tune, α – the momentum compaction, R
– the machine radius; βY , αY , βX , αX , ηX , η′X are the amplitude and
dispersion functions. Here the indexes Q and T mark the contribution re-
spectively of synchrotron radiation (quantum diffusion) and Touschek effect.
Total diffusion coefficients in respect of the particle energy and the radial
emittance are given through the following sums:

Du = DQ
u +DT

u ,

Dv = DQ
v +DT

v ,
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where DQ
u and DQ

v are determined, for example, in [1]. The Touschek diffu-
sion coefficients may be written as

DT
u =

Nr20cQS

16πγ3Rα
√
uv

〈
βXB(k, χm)

(βXv + η2
Xu)

√
æβY (1 + α2

X)

〉
,

DT
v =

Nr20cQS

16πγ3Rα
√
uv

〈
βXB(k, χm)H

(βXv + η2
Xu)

√
æβY (1 + α2

X)

〉
.

Here angle brackets mean the averaging over the machine azimuth (ϑ); N
is the number of particles in a bunch. The quantity B(k, χm) is a modified
diffusion rate function [4] which in contrast to the one-dimensional collision
theory [1] depends on the coupling parameter k:

B(k, χm) =
√
πk

∞∫
χm

√
1
χ
· ln

(
χ

χm

)
· S(χ, k)dχ ,

r0 is the classical electron radius; χm = (pm/σp)2; pm = p0
√
r0/bmax, the

classical lower limit of momentum transfer; bmax is the maximal scale of the
impact parameter in CMS. We determine the latter as usually through the
average particle density in the co-moving system:

bmax =
(
γV

N

)1/3

,

V = 8π3/2σXσY σZ is the bunch volume in the laboratory system. The steady
values of u and v are determined from the system of equations

u = uQ +
τE
2
DT

u ,

v = vQ +
τX
2
DT

v , (1)

τE and τX are respectively the damping times for synchrotron and radial
betatron oscillations.

The loss rate (the inverse beam lifetime) due to Touschek processes may
be found from the corrected formula:

1
τ
= 2

√
πr20m

3c4N

〈
C(k, ε)
σpA2

pV

〉
. (2)
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Here

C(k, ε) =
√
πkε

∞∫
ε

χ−
3
2

[
χ

ε
− 1

2
ln
χ

ε
− 1

]
· S(χ, k)dχ,

the modified "loss function" which depends on the parameters k and
ε = A2

p/γσ
2
p with Ap, the "energy aperture" limiting the deviation of the

longitudinal momentum from the equilibrium value. The factor “2” in (2)
takes into account for the fact that both particles get lost in one event of
scattering in CMS. This makes an essential difference in respect to the view
of similar formulae given in [1] and [4].

At k → ∞ the expression for C takes the form of the one-dimensional
approximation given in [1]:

C(∞, ε) = ε
∞∫
ε

χ−2

[
χ

ε
− 1

2
ln
χ

ε
− 1

]
· e−χdχ .

The same takes a place in the case of asymptotic behaviour of the modified
diffusion rate function B(k, χm).

3 Energy aperture
The beam lifetime will be mostly determined by single IBS for the low energy
operation at CESR and VEPP-4M. According to (2)

1
τ
∝

〈
C(k, εm)

A2
pσZ

√E3
XæβY (1 + α2

X)

〉
.

In order to calculate the beam lost rate caused by IBS one should know the
following beam parameters: EX , σZ , æ, Ap. The horizontal emittance EX

can be reliably calculated based on the optics with consideration of both SR
and IBS effects. In VEPP-4M case, it also may be measured by the SR-based
beam size monitor. Coupling parameter æ can be estimated from the vertical
beam size monitor’s data as well as the specific luminosity measurement. The
bunch length σZ can be calculated as well as be measured with a streak
camera.

The beam loss rate is most sensitive to the energy aperture (as A−2
p if

neglecting the weak influence of the factor C(k, εm) [4]). In general case the
quantity Ap is min {AL, AT } where the limiting half apertures AL and AT
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describe the boundaries for longitudinal and transverse motions respectively.
The limit AL is determined by the RF bucket height [5]:

(
AL

mcγ

)2

=
U0

παhE
F (ξ),

F (ξ) = 2[
√
ξ2 − 1− arccos(1/ξ)].

Here U0 is the radiation loss of particle energy per turn; h is the RF harmonic
number; ξ = eVRF /U0 is the RF overvoltage. Taking into account that the
synchrotron tune may be written as

QS =
αheVRF

2πE

√
1− 1

ξ2

and using the reasonable approximation ξ >> 1, one can obtain AL in a most
simple form

AL

mcγ
≈ 2QS

αh
.

For CESR AL/(mcγ) ≈ 0.9% at QS = 0.067 (26 kHz). Ideally, the value
AT for a given azimuth ϑ where the scattering occurs is defined through the
geometrical horizontal aperture of the vacuum chamber AX at the azimuth
ϑ∗ where the particle is lost:

AT (ϑ)
mcγ

=
AX(ϑ∗)−X0(ϑ∗)

ηX(ϑ∗) +
√
βX(ϑ∗)H(ϑ)

.

Here the term X0 describes the closed orbit distortion which may be sig-
nificant like as the pretzel orbit at CESR. Really, the dynamic aperture
ADA < AX may play the role of the effective aperture instead of the ge-
ometrical one (AX → ADA). It implies also that ADA may depend on the
closed orbit distortions (X0).

In the smooth approximation

AT

mcγ
∼ min |AX −X0|

2η̄X
,

η̄X is the characteristic value of dispersion in arcs. According to this crude
estimation AT /(mcγ) ∼ 0.5% for the CESR operation regime at the energy
E = 1843 MeV. This is of the same order like the value AL obtained above
and, consequently, must be refined on. For more accurate determination of
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both limits AL and AT for CESR we use the particle tracking simulation in
the 6D phase space.

In contrast to CESR, there are not significant special distortions of the
closed orbit in VEPP-4M introduced in regular experiments. Therefore the
energy aperture in VEPP-4M is definitely based on the RF voltage and makes
up Ap = AL ≈ 0.6% at E = 1.84 GeV (eVRF ≈ 400 keV).

4 Simulation code
We have developed the special code to calculate the beam energy spread,
emittance and lifetime taking into account for the IBS processes. It is based
on the modules of BMAD (Lattice Language Standard for CESR based on
MAD) [6] and subroutines for computing expressions from Section 2. Main
input data include the information about the design magnetic structure with
adding the calculated and measured nonlinearities; the coupling parameter
( æ); the pretzel orbit scale; the energy aperture (Ap); the beam current and
length. Setting of the coupling parameter found from the vertical beam size
measurement allows to incorporate an influence of all real perturbations on
the vertical emittance. The beam length is also set since it depends on the
RF voltage.

At the first stage, the Twiss parameters and the beam parameters deter-
mined by SR processes are obtained. At the second stage, the total effect of
SR and IBS processes in beam sizes, energy spread is calculated using (1).
Finally, the Touschek beam lifetime is computed from (2) based on results of
the second stage.

For calculation of the energy aperture determined by the dynamic one we
have developed the separate module with particle tracking. Tracking always
starts at the same azimuth (IP). Initial conditions depends on the azimuth
(ϑ) where the IBS acta occurs resulting in the instant change of the particle’s
energy of ε = δE/E:

X(IP ) = X0(IP )− ε · (T11ηX(ϑ) + T12η
′
X(ϑ)),

X ′(IP ) = X ′
0(IP )− ε · (T21ηX(ϑ) + T22η

′
X(ϑ)).

Here Tij are the elements of the transport matrix for transformation from ϑ
to IP within one turn. Evolution of the particle’s trajectory in the 6D phase
space during a few thousands turns is calculated using the special method for
tracking in non-linear magnetic fields. The initial energy deviation ε is varied
for a given azimuth which is linked to each element of the magnetic structure.
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Particle is considered to be lost and the appropriate value ε is a limit (ε∗) if the
phase trajectory reaches the design vacuum chamber boundaries anywhere
or comes out the RF separatrix. The effective energy aperture is found by
averaging ε∗ over the ring: Ap/(mcγ) =< ε∗ >.

Figure 1: Energy aperture, Ap, as a function of azimuth around ring. Main
interaction point is located at z = 0. Solid line, Pretzel = 0, represents
energy aperture for flatten orbit. Dashed line, Pretzel = 3000, is for
±15 mm horizontal orbit distortion.

5 Calculation results
Using the simulation code developed we have calculated the azimuthal de-
pendence of the CESR energy aperture for two main pretzel orbit scales
(in technical units): Pretzel=0 and Pretzel=3000 (see Figure 1). The scale
Pr = 1 (in arbitrary units) corresponds to the nominal pretzel wave ampli-
tude of ≈ ±15 mm with the vacuum chamber’s radial aperture of ±45 mm.
The tracking simulation shows that at Pr = 1 the energy aperture is deter-
mined through DA for any azimuth where the scattering event occurs. The
situation for Pr = 0 is approximately the same: the RF limit is essential for
events only at IR (the interaction region) where the dispersion is zero. Fig.2
represents the energy aperture averaged over the azimuth as dependent on
the pretzel orbit scale Pr. The behaviour of Ap with varying the betatron
tunes is of more complicated character as it is seen in Fig.3. The minimum of
this dependence is caused by the influence of the resonance 2QX −QS = 21.

10



Figure 2: IBS Energy aperture vs. pretzel orbit scale at CESR.

2
Q

x
-Q

s
=

2
1

Figure 3: IBS energy aperture vs. horizontal betatron tune at CESR.

The calculation have indicated that for ∼ 1.8 GeV CESR operation the
contribution of multi-IBS processes to the diffusion rate is negligible in com-
pare with diffusion caused by synchrotron radiation. As it was shown in the
experiment and calculations [4, 7], IBS starts to play a distinct role in the
beam emittances formation at VEPP-4M only below 1.3 GeV. The energy
scalings of the IBS effect in the beam emittances and lifetime in the CESR
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Figure 4: CESR’s horizontal phase volume and energy spread in units of their
values on quantum fluctuations vs. energy at bunch current is 4 mA.

Figure 5: Particle loss rate due to IBS versus CESR’s beam energy at bunch
current is 4 mA, Energy aperture is 0.44%.

case are represented in Fig.4 and Fig.5 respectively. For simplicity, the scal-
ings are calculated in the assumption that the strength of each CESR magnet
varies proportionally to the energy value.

Calculation results for the CESR specific particle loss rate (SLR is the
loss rate normalized to one mA of the beam intensity) are given in Table for
two pretzel scales and the typical value of the coupling parameter: æ = 0.01.

The similar calculation result for 1.84 GeV VEPP-4M is represented in
Fig.9 by the straight line (æ = 0.01, Ap = 0.56).
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Table. Experimental and calculation data for IBS Loss Rate at CESR

Pretzel Energy aperture, Coupling Specific loss rate,
Ap, % 1/(min·mA)

0 0.654 0.01 0.595 · 10−3

Calculation
3000 0.461 0.01 1.23 · 10−3

0 – ∼ 0.01 1.05 · 10−3 ± 10−4

Experiment
3000 – ∼ 0.01 2.42 · 10−3 ± 3 · 10−5

6 Experimental data
The beam lost rate (inverse beam life time) was measured as a function of
beam intensity. The measurements made at CESR with one bunch on two
different dates, 10/10/02 and 11/8/02, are represented in Fig.6. In given
experiments beam orbit was flatten. The vertical beam size measured with

Figure 6: Measured dependence of beam loss rate as a function of the bunch
intensity. A linear least-squares fit of the data 1/τ [1/min] = m0 +α · Ib[mA]
gives: m0 = (0.57± 0.20) · 10−3[1/min], α = (0.98± 0.05) · 10−3[1/min /mA]
for 10/10/02 data and m0 = (2.02± 0.11) · 10−3[1/min], α = (1.05± 0.03) ·
10−3[1/min /mA] for 11/08/02.
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synchrotron light monitor slightly varied (10%). Both dependencies are very
close to straight lines with similar slopes but differ in the pedestal level.
The latter may be explained by changing residual gas pressure between these
measurements.

The similar dependence at more larger beam intensities were studied in
the experiment with 8 bunches of the total current up to 40 mA. In Figure 7
one of the lines demonstrates this dependence versus the beam current per
one bunch. For comparison, the result of the “one-bunch” experiment is

Figure 7: Dependence of beam loss rate as a function of the bunch intensity
for a single (squares) and for 8 bunches (circles). A least-squares fit of a
straight line through the data: 1/τ [1/min] = m0 + α · Ib[mA] gives m0 =
(2.0 ± 0.1) · 10−3[1/min], α = (1.05 ± 0.03) · 10−3[1/min /mA] for a single
bunch andm0 = (1.2±0.1)·10−3[1/min], α = (1.32±0.03)·10−3[1/min /mA]
for 8 bunches.

shown here too. The slope of the multi-bunch line is slightly larger due to
gas desorbtion induced by the intense beam. But taking into account for
the significant difference in the total beam intensity one can suggest that the
basic mechanism of particle losses remains the same in both cases and does
not connect to beam-gas scattering.
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Figure 8: The beam loss rate measured as a function of the bunch intensity for
flatten orbit, Pr1 = 0, (circles) and for ±15 mm horizontal orbit distortion,
Pr1 = 3000, (squares). A least-squares linear fit 1/τ [1/min] = m0+α·Ib[mA]
gives m0 = (2.0 ± 0.1) · 10−3[1/min], α = (1.05 ± 0.03) · 10−3[1/min /mA]
for flatten orbit and m0 = (0.8 ± 0.3) · 10−3[1/min], α = (2.42 ± 0.10) ·
10−3[1/min /mA] for distorted orbit.

Figure 8 shows some results of measuring the pretzel orbit influence on
the beam lifetime. The experiment was performed at minimal initial closed
orbit distortions for two states of the pretzel orbit (Pr = 0 and Pr = 1).
The vertical beam size was remaining unchanged and minimal. Its value
corresponds to æ ≈ 0.01 that was sustained by the specific luminosity mea-
surement. Generalized data on SLR measurement depending on the pretzel
orbit scale are summarized in Table.

Experimental data for VEPP-4M at 1.84 GeV are represented in Fig.9.
The dependence of PLR on the one-bunch beam current achieves its maxi-
mum at ≈ 4.5 mA and then begins to decrease due to the effect of bunch
lengthening. This effect plays a notable role at VEPP-4M because of the
large inductive impedance of its vacuum chamber [7]. There is the beam-
residual gas interaction pedestal in the dependence of about 0.0016 min−1

that is close to CESR data.
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Figure 9: The beam loss rate calculated (the straight line) and measured
(the saturated dependence) as a function of the bunch intensity for VEPP-
4M (æ ≈ 0.01). E = 1844 MeV; the longitudinal size – 2.35σZ = 340 ps
(10 cm); the vertical beam size – σY = 0.15 mm; the horizontal beam size –
σX = 0.86 mm; the residual gas pressure – P = 1.1. · 10−9...1.3 · 10−9 Torr.

7 Discussion
Experimental data for CESR demonstrate the Touschek-like type (linear)
behaviour of PLR with changing the beam intensity. Beam-Residual Gas in-
teraction may contribute a small pedestal in this dependence. Gas desorbtion
caused by the circulating beam is not significant and its influence on PLR can
be neglected. The “PLR vs. the beam intensity “ dependence is of a more
complicated character in the VEPP-4M case due to the bunch lengthening
phenomena. However there exists a wide range of the measured curve where
it passes close to the linear law and its slope is in a good agreement with
the Touschek PLR calculation. All this proves that IBS is a dominant factor
affecting the beam lifetime in both cases.

As one can see from Tab.1, the ratio between calculated SLRs for two
states of the pretzel orbit (≈ 2.1) well corresponds to the similar ratio for
measured SLRs (≈ 2.3). At the same time the discrepancy between the
measured and calculated SLR for CESR makes a factor about two. Since
we use the same simulation code for CESR and VEPP-4M one may suppose
that one of the possible source of the discrepancy is connected with some
uncertainty in the knowledge of the energy aperture which is the most strong
factor (1/τ ∝ A−2

p ). In the CESR case, the value for Ap is found from the DA
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simulation based on the model distribution of nonlinearities in the guide field
over the ring. Really, Ap may be notably smaller. Experimental study of the
energy aperture at 1.8 GeV CESR is needed to refine on this parameter that
could be useful not only in the viewpoint of the Touschek effect analysis.

Note, our approach is non-relativistic with regard to relative motion of
interacting particles in the beam. Relativistic corrections to the IBS cross sec-
tion are considered below in Appendix. Corresponding estimates are made for
CESR at E = 1843 MeV whose emittance is a few times larger than VEPP-
4M one. CESR transverse momentum spread σp ∼ 0.2 MeV/c that yields
the transverse velocity in units of the speed of light about β⊥ ∼ 0.3 in CMS.
The total difference between the relativistic loss rate and non-relativistic one
is found to be characterized by a factor of about 0.97. I.e. the considera-
tion of the relativizm does not change notably the results obtained without
relativistic corrections.
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Appendix

In the general case, the differential cross section of the electron-electron
elastic scattering in CMS, averaged over all spin states, may be written as
[8]:

dσ

dΩ
=

r20
4β4

cm

(2γ2
cm − 1)2

γ6
cm

·
[
1 + 3 cos θ2

sin θ4
+

(
γ2

cm − 1
2γ2

cm − 1

)2

·
(
1 +

4
sin θ2

)]
.

Here βcm, γcm and θ are respectively the velocity in units of the speed of
light, the Lorentz factor and the angle of scattering of the electron in CMS.

Non-relativistic formula for the differential cross section of electron-
electron scattering takes a form:

dσ

dΩ
=

r20
4β4

cm

· (1 + 3 cos θ2)
sin θ4

.

One can see that the relativistic case differs from the non-relativistic one
mainly by the factor

(2γ2
cm − 1)2

γ6
cm

=
(1 + β2

cm)2

γ2
cm

.

This results in the dependence for the cross section at large energies of the
form ∝ γ−2

cm.
To find the particle loss rate with relativistic corrections one must take

into account the relativistic kinematics of relative motion of the interacting
particles. The relative velocity in the two-particle interaction is

ν =
2βcm

1 + β2
cm

.

In the non-relativistic case ν = 2βcm. Let σ be the cross section integrated
over the angle dependence and corresponding to the event, when the particles
with the velocity βcm get loss. The particle loss rate (the beam lifetime) is
determined by the product (ν̄σ)cm averaged over the particle transverse mo-
mentum distribution. Therefore, the total difference between the relativistic
loss rate and non-relativistic one may be approximately characterized by the
factor

(1 + β2
cm)2

γ2
cm

· ν

2βcm
=

(1 + β2
cm)

γ2
cm

.
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The estimation of this factor for the CESRc conditions at E = 1843 MeV
is about 0.97 (βcm ∼ 0.3, γcm ∼ 1.06), i.e. the consideration of the relativizm
does not change notably the results obtained without relativistic corrections.

The quantity (ν̄σ)cm is an effective volume, averaged over the particle
transverse momentum distribution, in which the loss of one particle per one
second occurs (in CM). Hence the gain of the rate of such events for dN
electrons from the beam volume element dV with the beam particle density
ρ will be d(dN/dt)cm = (ν̄σρdN)cm = (ν̄σρ2dV )cm. In the laboratory system
(L) it yields the loss rate

1
τ
=

2
γ2N

(ν̄σ)cm

(∫
ρ2dV

)
L

=
1
τ
=

2N
γ2VL

(ν̄σ)cm,

where N is the total number of beam particles; γ is the Lorentz factor and
VL is the beam volume in L. Note, in contrast to [1], we introduce the factor
"2" to account for the fact that two particles get loss in one event.

The quantity σ is determined from

σ = 2

arccos µ∫
0

π∫
0

dσ sinχdχdφ,

where dΩ = sinχdχdφ; cos θ = sinχ cosφ; µ = Ap/(γp); Ap is the energy
aperture; p is the transverse momentum in CM. We obtain

σ =
πr20
8β4

cm

(2γ2
cm − 1)
γ6

cm

·

·
[
1
µ2

− 1 + lnµ+ 4
(
γ2

cm − 1
2γ2

cm − 1

)2

(1− µ− 4 lnµ)

]
.

First three terms in large brackets describe the non-relativistic part in the
angle dependence.
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