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Abstract

Detailed analysis of the penetration of external AC magnetic field
into an arbitrary-shaped cylindrical conducting can is performed for
the case when magnetic field is parallel to the axis of the can. The
effect of narrow slits cut in the can walls on the field screening is also
analyzed. Analytical solution is found for the can of elliptical cross
section immersed into transverse magnetic field.
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.

In the most simple case, the problem of the penetration of alternating
magnetic fields into normal metals can be discussed in terms of a single
length, the skin depth δ, defined in Gaussian units as

δ = c/
√

2πσω , (1)

where σ is the electrical conductivity. For simplicity, we have taken the
permeability as unity and we have also assumed that the carrier mean free
path `� δ, in order to exclude the regime of anomalous skin effect.

Historically, skin depth calculations leading to eq. (1) refers to a cylin-
drical wire that carries AC electric current along a wire, with wavelength
exceeding the wire diameter, λ� d. In the limit δ � d the problem reduces
to the penetration of the AC field into a semi-infinite solid bounded by a
plane. In this case the current density and electromagnetic field fall off expo-
nentially from the outside of the solid with a characteristic length given by
(1). This problem is analyzed in detail in many textbooks (see e. g. Tamm
[1], Smythe [2], and Jackson [3]).

Such approach might create illusion that the problem involves the only
the parameter, the skin depth, and that the AC magnetic field should pene-
trate into a metal can if its wall thickness h does not exceed the skin depth:
h < δ. This conclusion, however, ignores the importance of the specific ge-
ometry of eddy currents. In fact, even for h � δ, a conducting cylinder of
radius a� h can effectively screen external AC magnetic field provided that
h � δ2/a. This effect has purely geometrical nature and escape attention
of most textbook writers. A rare exception is the monograph by Meshkov
and Chirikov [4], where one can find an elegant “physical” solution of the
following problem: “Calculate the screening factor for a cylindrical screen of
radius a, wall thickness h of which is much smaller than the skin depth δ.
Magnetic field is parallel to the axis of the cylinder.” A solution, similar to
Meshkov’s one, was published later by Fathy, Kittel, and Louie [5]; they did
not know the monograph [4] but mentioned exact “mathematical” solution
given in Ref. [6] in terms of Bessel’s functions.

Strong screening effect of a conducting thin-walled cylinder has geometri-
cal origin. We reproduce below a simple explanation which one of us (I.K.),
being a student, heard from Dmitry Ryutov in the end of 1970s.

Let us consider a cylindrical conducting screen of radius a immersed into
magnetic field Hout, parallel to the axis of the screen and alternating with
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the period T . As follows from the equation

∂H
∂t

=
c2

4π σ
∆H , (2)

derived in the theory of skin effect, the magnetic field penetrates into the con-
ductor to a depth equal to the wall thickness for the time τ ∼ 2πσh2/c2. We
assume that τ � T ; otherwise we come to a case of strong skin-effect where
the skin depth is less then the wall thickness. When associated magnetic
flux ∆Φ ∼ πahHout penetrates into the screen interior, it changes internal
magnetic field Hin by the magnitude ∆Hin ∼ ∆Φ/πa2 ∼ (h/a)Hout . It is
small compared to Hout since h � a but such flux portions penetrate T/τ
times for the total period T of the magnetic field alternation. Consequently,
the internal magnetic field rises up to Hin ∼ (T/τ) ∆Hin ∼ (T/τ) (h/a)Hout.
Evaluating T as 2π/ω, we conclude that Hin/Hout ∼ δ2/ah, and the internal
field is small compared to the external one if h� δ2/a .

In this paper, we extend the above mentioned “physical” solution to a
case of a cylindrical screen of arbitrary cross section. We discuss the effect
of slits cut in the screen walls, which can be important for practical use of
metallic screens in the experimental environment. We also consider screening
of magnetic field perpendicular to the screen axis. In this case exact solution
can be found for definite screen cross sections, such as circular or elliptic.
In particular, we show that the circular cylindrical screen has numerically
equal screening factors for both longitudinal and transverse magnetic field.
In final section we calculate electric field inside thin screen since it is the
electric, rather than magnetic AC field is of primary concern in experimental
environment.

1 Longitudinal magnetic field
Let a thin conducting cylinder is immersed into external magnetic field, par-
allel to its axis directed along z-coordinate. Cross section of the cylinder can
be of an arbitrary shape, not necessarily circular one, but both the area of
the cross section S and the wall thickness h�

√
S do not depend on z, while

h may vary along the circumference of the cylinder. We assume the cylinder
to be long enough to consider it as infinite. This reduces the problem to two
dimensions. For simplicity we assume that time dependance of magnetic field
is exp(−iωt).

The screen does not disturb the external longitudinal magnetic field Hout.
In the quasi-static limit, when the wavelength λ = 2πc/ω exceeds the charac-
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teristic cylinder dimension
√
S, both external Hout and internal fields Hin are

uniform. In the case of weak skin-effect, δ � h, the current density within
the wall j = σEτ , as well as the electric field Eτ , is uniform across the wall
but can vary along the circumference of the cross section. One can mention
that electric field is tangential to the wall surface at each point. The total
current I = jh per unit length of the can is a constant value, and Eτ can be
found from the equation

Eτ = I/σh , (3)

being the magnitude I is given. The latter can be found from the Faraday
law:

E = −1
c

dΦ
dt

, (4)

which states that the emf

E =
∮
Eτ dl (5)

along the circumference of the cross section of the screen is proportional to
the rate of change of the magnetic flux Φ = HinS. The thinner are can walls
the more accurate are the expressions for Eτ and Φ. The magnetic fields
inside and outside the screen obey the Ampere law:

Hout −Hin = −4π
c
I . (6)

Combining all together, we obtain the ratio of the internal magnetic field
to the external one:

Hin/Hout =
[
1− 2i

δ2
S

/ ∮
dl

h

]−1

. (7)

Since the ratio is a complex value the internal magnetic field has phase lag
in comparison with the external one. Absolute value of the ratio yields the
screening factor

|Hin/Hout| =

[
1 +

(
2S/δ2

∮
dl/h

)2
]−1/2

.

The can effectively screens the field provided that δ2 � (h/l)S , where l is
perimeter of the can.
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Figure 1: Rectangular screen with a
cut slit.

Figure 2: Rectangular screen with a
tunnel slit.

Eq. (7) is the main result of this section. It effectively solves the problem
of electromagnetic screening for arbitrary shape of conducting can in the case
of weak skin effect. To illustrate the flexibility of our method we apply the
Eq. (7) to three specific geometries.

In particular case of a circular cylinder with the walls of a constant thick-
ness h, Eq. (7) reveals well known result [4, 5]:

Hin/Hout =
[
1− i a h/δ2

]−1
. (8)

For a rectangular screen with the cross section 2a × 2b and wall thicknesses
ha and hb, shown in Fig. 1 (but without any slit), we have

Hin/Hout = 1/[1− 2i a b/(a/ha + b/hb) δ2] . (9)

For the elliptical cross section with the half-axes b < a and the walls of a
constant thickness h we find:

Hin/Hout = 1/[1− πi b h/2E(
√

1− b2/a2) δ2] , (10)

where E(k) =
∫ π/2

0
(1−k2 sin2 φ)1/2 dφ is a complete elliptic integral of second

kind.
Taking the limit a→∞ in Eqs. (9) or (10), we obtain formal solution of

1D problem where two parallel plates of constant thickness h are separated
by the gap of width 2b:

Hin = Hout
[
1− iA b h/δ2

]−1
.

Though the final geometry are the same for each initial geometry, the nu-
merical coefficient A acquires different values. This means that the one-
dimensional problem is badly established because its solution depends on
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Figure 3: Screening factor κ(ω) = |Hin/Hout| for a screen with cut slit (solid
line) and without slit (dashed line) vs AC field frequency. The frequency ω is
normalized to ωRL = c2R/L where L = 4πS is the inductance of the screen
per unit length. For very thin walls (less than a micron) magnetic field
inside the screen may exceed the outer field near the resonance frequency
ωLC = c/

√
LC as shown in the right figure.

how the two plates are connected at the “infinity”. Otherwise it is not pos-
sible to determine uniquely the currents flowing along the plates. One can
imagine also that the remote parts of the wall have slits that are able to
drastically change screening factor because AC field freely penetrates into
the interior of the screen throughout the slits. The effect of a slit can read-
ily be accomplished with minor amendments in the method which led us to
Eq. (7).

A narrow slit of the width d � h is equivalent to a plane capacitor. Its
capacity per unit length is equal to C = ε hcut/4π d, if the slit is filled with
the material with permittivity ε, and the wall thickness near the slit is hcut.
Electric current I is to be found from the equation

RI +Q/C = E (11)

instead of Eq. (5), where R =
∮
dl/σh is the resistance of the screen walls per

unit length, and Q = I/(−iω) is the charge of the capacitor. Simple algebra
yields:

Hin/Hout =
1 + i/ωτ

1 + i/ωτ − (2iS/δ2)/
∮
dl/h

, (12)

where τ = RC. Typical plots of the screening factor (12) versus frequency
are drawn in Fig. 3.

Because of low capacitance of the slit, the magnitude of ωτ is typically
very small even at very high frequencies, ωτ � 1. As a result, screening of
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AC field now occurs at much greater frequency when δ2 � (h/l)S ωτ. Since
even very narrow slit of the kind shown in Fig. 1 significantly reduces the
ability of a conducting can to screen AC field, it is rarely used in practice.
Instead, the slit is usually has the form of a maze or a tunnel shown in Fig. 2.
In particular, similar screen usually shields Rogovsky’s belt which is widely
used in fusion facilities to measure plasma pressure and currents.

Accurate treatment of the tunnel slit is somewhat cumbersome but the
result is rather simple in the limit ωh/σd � 1, which covers practically
important range of frequencies. In this case, one can still use Eq. (12) with
the capacitance and resistivity given by C = εd/4π∆l and R = (l− 1

3∆l)/σh,
where l is the circumference length of the screen, ∆l is the length and the
maze (so that total length of the conducting wall is l+ ∆l), d is thickness of
the maze; for simplicity the latter is assumed to be constant as well as the
thickness of the conducting wall h. This result can be obtained “by fingers”
if one notes that the voltage between interfacing points of the tunnel slit is
almost constant. It means that capacitance C of the slit is equal to that of
the plane capacitor of the width ∆l and the gap d between the capacitor’s
plates though the plates are not equipotential. To calculate the effective
resistance R we note that total current flowing along the circumference of
the wall from one end of the cut to the opposite end, linearly rises from
zero to maximal value I, which enters the equation (11), on the length of
the tunnel ∆l, then remains constant outside the gap on the length l −∆l,
and finally drops linearly to zero on the opposite side of the gap, again on
the length ∆l. Calculation of the Joule-Lenz heating then yields the above
mentioned result, R = (l − 1

3∆l)/σh.
Another way to diminish penetration of the AC field through open parts

of the screen is to use a cut, limited both in width and length. For example, a
small circle hole of radius a perturbs magnetic field only in the close proximity
of the whole–at large distance from the hole, r � a, the perturbation falls
down as m/r3, where m = 2(Hout −Hin)a3/3 (see Ref. [3]).

2 Transverse magnetic field
A conducting can immersed into the transverse magnetic field perturbs exter-
nal magnetic field, and magnetic field inside the can becomes non-uniform.
This complicates the problem as compared to the case of the longitudinal
magnetic field. In this section we show that simple solution exists for a
number of cross sections of special shapes. We consider a cylindrical screen
with the elliptic cross section and with thin walls. Magnetic field inside such
screen can be made uniform by special profiling of the wall thickness along
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circumference of the cylinder. We consider the latter case in more details.
It is natural to solve this problem in elliptic coordinates ξ, η, attached to

the focuses of the ellipse: x = p cosh ξ cos η, y = p sinh ξ sin η. The distance
p between the focuses is to be found from the pair of equations: a = p cosh ξ∗,
b = p sinh ξ∗, with ξ∗ being the elliptic coordinate ξ of the screen. Having
written the square of the arc length (dx)2 + (dy)2 = (hξ dξ)2 + (hη dη)2, we
find Lamé coefficients: hξ = hη = p (cosh2 ξ − cos2 η)1/2.

The problem is fully described by z-component Az of the vector potential
A. Note that H = ∇Az × ẑ , and hence

Hξ =
1
hη

∂Az

∂η
, Hη = − 1

hξ

∂Az

∂ξ
.

Outside the wall, where there is no current, the function Az satisfies the
scalar Laplace equation ∆Az = 0. In elliptic coordinates it takes the form

∂2Az

∂ξ2
+
∂2Az

∂η2
= 0 . (13)

Since physical solution of this equation is single-valued, Az is a periodic
function of the angle coordinate η. Hence, Az can be expand into a series,
each term of which has the form of An exp(inη) exp(±nξ) with integer n
(positive or negative). Every term of the series satisfies the equation (13),
and the coefficients An are to be determined from the boundary conditions
at ξ = 0, ξ = ξ∗, and ξ →∞.

At large distance from the screen (ξ → ∞) external field tends to the
unperturbed vector with components Hx,out, Hy,out. It means that outside
the screen, in the region ξ > ξ∗, one needs to discard fast growing terms:

Az,out = Hx,out p sinh ξ sin η −Hy,out p cosh ξ cos η

+
∞∑

n=0

[an e−nξ sin(nη) + bn e−nξ cos(nη)] = 0 . (14)

Boundary conditions at ξ → 0 can be derived from the fact that magnetic
field is continuous at the line connecting the focuses of the elliptic system of
coordinates. It means that the derivatives ∂

∂ξAz ш ∂
∂ηAz are odd functions

of η and leads to the following series

Az,in =
∞∑

n=0

[cn sinh(nξ) sin(nη) + dn cosh(nξ) cos(nη)] = 0 (15)

for ξ < ξ∗.
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We match the series (14) and (15) using the boundary conditions at the
screen boundary ξ = ξ∗. The continuity of Ez = − 1

c
∂
∂tAz field here yields

the first equation Az,out = Az,in . Second equation follows from the Ampere
law:

1
hξ

[
∂

∂ξ
Az,out −

∂

∂ξ
Az,in

]
= −4πi ω σ h

c2
Az .

Since the Lamé coefficient hξ depends upon the angle variable η, various
harmonics in the series (14) and (15) are entangled in general case, so that
all the coefficients an, bn, cn, dn, generally speaking, are not zeros. In other
words, magnetic field both inside and outside the screen is not uniform.

A notable exception supplies the case when the wall thickness h is in-
versely proportional to hξ so that the parameter Z = 2hhξ/δ

2 is constant.
In this case only the coefficients a1, b1, c1, d1 are not equal to zero. If exter-
nal magnetic field is not parallel to the ellipse axes, magnetic field inside the
screen is uniform but not collinear to the external field:

Hx,in/Hx,out = 1/[1− iZ e−ξ∗ sinh ξ∗] ,

Hy,in/Hy,out = 1/[1− iZ e−ξ∗ cosh ξ∗] .
(16)

In the limit where ξ∗ →∞ but hξ is finite, hξ → a, we come to the circular
screen of radius a, and Eq. (16) yields the same result as for the circular screen
in longitudinal magnetic field (8). This means that electromagnetic screening
is effective for arbitrary orientation of external AC field. Note however that
for elongated shape of the screen cross section, a/b = tanh ξ∗ � 1, screening
factor is significantly larger when external magnetic field is directed along
short axis of the ellipse.

3 Electric field inside the screen
Practical goal of electromagnetic screening in experimental environment is to
diminish electric AC field rather than magnetic one since the instrumentation
indications are more sensitive to electric field. If the magnetic field is trans-
verse to the axis of the screen, the electric field can readily be found from
the results of previous section since in this case E is directed along the axis z
of the screen, and Ez = −(1/c)∂Az/∂t. Below we focus on the longitudinal
magnetic field.

In this case, electric field is a two-dimensional vector perpendicular to the
axis z. It can be cast into the form

E = ∇ψ × ẑ (17)
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where ψ is a function of x, y, and ẑ is the unit vector directed along z. The
form (17) satisfies the equation div E = 0. In the interior of the screen the
Faraday’s law yields

∆ψ = − iω
c
Hin (18)

where Hin is given by Eq. (7). The equation (18) should be supplemented
with the boundary condition (3). It can be solved for various shape of the
screen. For rectangular screen shown in Fig. 1 we find

Ex =
∂ψ

∂y
= − iω

c

hb a y

hb a+ ha b
Hin ,

Ey = −∂ψ
∂x

=
iω

c

ha b x

hb a+ ha b
Hin ,

where the point x = y = 0 is assumed to be placed at the geometrical center
of the cross section of the screen. Note that at given magnitude of Hin electric
field inside the screen can be additionally diminished along a desired direction
by a proper choice of the wall thickness.
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