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ABSTRACT

The mixing of the collective states of opposite parity
4 due to a weak interaction is discussed. The existence of a
regular mechanism of enhancement of the weak interaction is
revealed., The value of the enhancement is proportional to a
power of the collectivity of the states under discuesion, For
the giant resonanses 1~ and 17 the coefficient of enhancement

12" of the opdee ob~&17%,



1, INTRODUCTION

The mean scale of the weak interaction in nuclei is of
the order cf~a10-7 compared to the scale of a nuclear shell
structure, E}/ﬁﬁg . But in many cases the real effects of
parity violation (PV) in nuclei are greater then this simple
estimate, up to one, two and sometimes three order of magni-
tude (Ref./1- 3!}. The various mechanisms of enhancement of the
PY-effects in nuclei ere discussed in Ref, /4,5/. Here we would
like to pay attention to the posaibility of strengthening of
the PV-effects due to the existing collective motion in nuclei.
Since the probabilities of electromagnetic transitions from
collective states are enhanced, one should expect the similar
enhancement in the vector part of weak interaction in a nucleus.
This mechanism has an obvious feature of universality through
+he Periodic Table, although the magnitude of enhancement may
be not large.

For estimation of the PV-effects one has to calculate the
mixing coefficient

. Lm|Wihy

Eh* Em {1}

between the states of opposite parity, where W is the weak
interaction, E end [ n» are the energy and the state of a nuc-
leus, In randqm-phase approximation (RPA) the matrix element
of W has two kinds of terms. One of them represents a direct
PV-interaction between the collective states, the other one
corresponds to & PV-interaction of a gingle particle with a
core, In other words, a collective state in RPA is a coherent
superposition of particle-~hole states, and the PV-effects can
arise not only from direct FV-interaction between particle=-

‘hole pairas, but from FY-effects in single-particle states too.
Ag it will be seen below, these terms have the same value as

the direct interaction.

2,Bagic Egquations.

Let us discuss now the properties of collective states
of a system with a Hamiltonian which is disturbed by & small
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two-particle interaction. For description of the collective
phenomena in a nucleus we shall use the formalism of the Ge-
neralized Density Matrix (GDM) proposed by Belymev and Zele-
vinsky, Ref/6/. In this formalism the dynamical equation for
unperturbed density matrix R is

[E,E*’:‘]:o: (2)

where § is the generalized nuclear field including the inde-
pendent particle energy £ and the self-consistent part =S
dependent upon the effective two-particle interaction V(a,b)

Sy= Em+ Sta) = erﬂwﬁgvm,zjﬁwj_, i

fi is the collective Hamiltoniasn in the space of considered
collective states,

ﬁ:’: E[ffﬂ)ﬁl’ﬂ}} +%E‘J{ﬁf‘f}mﬂ:3}ﬁﬁ:)j = (4
B384 RI54]

The equation (2) is understood as the set of equations for
matrix elements of B,8 and f inside the considered collective
band, In such & sense the f and § introduced here are the ope-
rators in the extended space of the single-particle and collec~
tive variablea,

. Let us find the linear respons of & system to a small
perturbation of the effective interaction

v(a,b) — V(a,b) + W(a,b).

The linearized equetion for the correction J8 to density mat-
rix is

[SR,§+A]+[R,85+dH] =0, -

Where the corrections to nuclear field 88, collective Hamil-
tonien Ofi and to O R are related, due to the consistensy
conditiona (3) and (4).

Sft’u,!:: ngﬂlf-E[Vf“:‘)gﬂj + 7T, {Wraﬂa.i éw)} : X

SH=Tf{8§ ok} + %‘Fg‘)’,@mw{a{g ﬁm}' (7)

To solve the equations (5-7) we need to define more precisely
the structure of the unperturbed system. Further, we shall
discuss the situation where the collective motion may be des=
eribed by & set of harmonic vibrations in RFA.

3.Random=Fhase Apprnximation in GDM.

Tn the freme of GDM the unperturbed quantities f,5 and
fi cen be expanded in the infinite series on powers of if end
Eg which are the creation and annihilation operators of normal
modes (see Ref.76/). RPA corresponds to the first order in the
series of f and 8 and to the second order in fi.

R B+ < RAL« REED + 7% (8)
S « g+§(sk£;+s';ﬁku... ; (8')

. +i gre
ﬁ“zk.mks 1{+'." { }

S and B are static parts which, diagonelized simultaneously,
determine the single-particle spectrum E, end the occupation
numbers n,. At this order we get the basis | 1) of the inde-

pendent particle model,
Rip = “1"5;2* 842 = By’ Y20 (9)

The states I1) have a spimor structure which allows the ef=~
fects of Cooper - pairing to be included sutomatically. The
precise spinor structure of operators and single~particle sta-
teg can be found in Ref,/6/. The next terms in the series (8)
correspond to RPA unharmonic corrections and may be omitted
if we are not interagteﬂ in the regiom of transitional nucled.

2



The guantities R, satisfy the equation

kK
[Re,S] +[R,8c]= ke (10)
determining, together with the consistency condition,
S = Ty [V R} (10")
the frequancies @y of normal vibrationms.
The normalization of R, is determined by Eqs.(7) and (8''). 4

For a further convenience let us introduce a complete set
6, (1,2) of the solutions of RPA equation (10), This set will
be used a8 a basis in the space of two-quasipaerticle states, §
The equation for ¥, (1,2) is

-

LE=s[¢5]+[RB{Vagpw]]=wy a1

+
folw) = Y (-w)

The RPA operator © is not Hermitian, and an equation for
conjugate functions 7(,4 s

R > B it o 6

(£)T denotes a transposed operator. : '
The functions X, and &  form a biorthogonal set {«}
+
B{A, 0} = dig (12) ‘

The et {«} can be divided into two classes. The first one,
containing the physical modes ¢ , describes the transitions
through the Permi surface only, with &, >0 and ¥, = [, 4]
The second class includes the modes {4, describing the "pa=-
rallel” transitions on the same side of the Fermi surface, with
w;;r --E.- o Et"' and

- p
'x#k;rf“z) = ;éf.? (13}

Phese modes correspond to transitions of an odd particle.

Now, let us discuse the solution of the basic equations
(5-7). In RPA, the correction to collective Hamiltonian Jf
cen be written as follows

ggzdzhjj+;,:,4ﬁ‘[{ﬁ#£:ﬂ; 185 Achy +hy A) (14)

where A7 is the phonon creation operator of the type «
phonon. The coefficients Z, and }:,@ have the obvious symmet-
ry properties,

s s > }’-f;s 3 }'ﬁ* ' (14

The correction to density matrix 0/ and to aelf-cnnaiatent
field S8 should be found in the form

5R = .,p*'Z(ﬁA.;"’.f;A‘)
5§ = G*é(mAx A“) e

®he G is the correction to single-particle shell model po-
tential, The P 1is the sfatic distortion of the density mat-
rix, The quantities L and O determine the corrections
to phonon amplitudes.

Por O end (), we have, from the consisiency condition

(6)

G = Iﬁa ‘) 'pmj-:- [wragRi) j (16)

e fon I)fw} ""Z;[Wf“ﬂfjf-’} (161)

The similar conditions arise for the h and g coefficients
of collective Hamiltonian Of, For exampl, the coefficients
he are (from (7))



he = B{Spl+ BICRE, (17)

Inserting the expressions (14,15) into Eq.(5) we find the eq-
uations for JP’*j and 0’4 ,

[p.3]-[R6]+ 2 (Rih~Rb) = 0,
[L,S]+[R, 6]+ [R 6]+[P.S] - wup +

(18)

'*;(&,&fj,,—.2){3;},,},;-*,%’6;;”%:&): i )

In Eq.(19) for Pu the second order density matrix r{?)pas
arisen

S (2) e Ly hew X A o
R = g(@f’;ﬂdﬂﬁ*ﬁxﬁﬂﬂqﬁ +'Q.f‘,514.:’4_ﬂ) . (20)
II,r‘!-

But, as we shall see, there is no need in the explicit expre-
ssion for R:m and R, for our purpose.

It is interesting to note, that the equations (18,19)
and the conditions (16,17) do not determine the coefficients
h, and h, , B8« uniquely. To demonstrate this, one should
multiply Eq.(19) by S end take the Trace. Since / f§[A g‘}}:
- O end F{E[E,Gﬂ} .~ & we find from (17)

ouhi= O TE(ERY wTRfoRY = T (44500} -
A

-9 },; I ffﬂﬁ}) + T {5 [Re,6]+3[P, ] Wa FrfORLY

Using the identity FIA{&FJ} - Zr§[A 8]c} and Eqs.(10),
(18), we find, after some transformations,

Weha=2 by [ TR S) TS RaY} b {Fr R0 S} + 2TER,J (21D

But, due to consistency conditions (4) for unperturbed collec-
tive Hamiltonian

S —— S

T~ (R, S + 27 {5k} = 0,

Tr{Rs S TSR} = uup, (22)

The quantities h, are therefore arbitrary. It cen be shown
in a similar way that the coefficients gus» and hy, (for
A% ) are as such arbitrary just as h, are. The arbitrary
character of these coefficients has a simple explanation, It
reflects the invariance of the dynamical equetion (2) under
unitary transformations in the collective space. The coeffici-
ents of collective Hamiltonian depend obviously on the parame-
ters of & unitary transformetion, A definite set of hu and
g0 + Bup corresponds to some definite basis f«} in the
collective space. For our purpose, & naturel basis is the ba-
sis of unperturbed states. In this case, the correction of
to the density matrix is equal to zero, becuase

(.lﬂij "Efzf'r'(} = {ﬂftaig;!"{:)j

by the definition and the states &>, /s> are unperturbed ones.
The equations of motion (18,19) become thus aimpler

[E,Tv']+_¢£(£:/1¢"*‘?-chz)=0: - (23)
[E_-, I‘I-J""[E«nw] +2};- (%ﬁ;e;' A‘ﬂfﬁ+ﬂﬂ&,‘2€ﬂlﬁ)=ﬁl (24)
vhere W= H{We, YR} wim=T, {wa R0}

From these equations we get immediately,

he = = 1;'{[jisz]3;};

or, using W = [ELA’J
e T 8] T mweBe]

For 8ap and h,, we get



% %, [ eoWeeouwp =T {14, wix) 4? (b (R, X} h TR, M’,{LE
26)

5 EJ Yt o o) Tt [g, v} 2l Ry Ih-2B50 8, 15) 7

These expressions give the solution of our probiem.'

4.The Model of Contact Interactionm,

Now, let us estimate, with the help of (25-27), the order

of the P¥-effects in collectiive statea. For this purpose we

ghall take the weak interaction W(a,b) in a simple cunta.ct form.

Wia, )= 5= (G -&)+[(B-B) SE-F)]+ (1) A AL
e o E‘}" (EE)
' [fE'E),a?.g-rg)l_} 7;: :

Ih.ern/u‘_ md./u are the magnetic moments of the proton and neu-
tromn,

( T'* {: fi*), - (29)

E;."'}'i ' "?_:_L are the spin and isospin Pauli matricies, and
[A Blt= g BA . We ahall use the exchange part of
¥{a,b)

W o) = go—{ (8.18,) [(R-5), StE7)]+ (1)

-(é:—tr‘;)-[ré-é"),c?ﬁ-m}g-(f—ez'-fzv. e

We shall discuss below the mixing of 1~ and 1% giant resonan~
ces in en evem mmoclus. For simplicity, the resomancs 1° will
be described in a "hydrodynamical® spproximatiom following
from RFA in the limit nflnrgtﬁnqmcnnndlhm-rmein-
teraction (Ref./T/).

let us introduce, according to Ref./7/, the qmt:l.tiu

RLF)= Z&M‘VI‘P’JW("J e St L 38 Cachl )=
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=G ‘B'II;[TE W} where W/ is the wave function of a state 1),
and V(E-E)= BT G O(F ~%) . For an isovector mode, St =
= T2 A (F) therefore, ‘

gffF) - 9T AP = T84

Expanding Eq.(10) on powers of [  $//w , we find, for BR{E-},
the equation

w2 B,(F) + Gy V (hF) 7 5. ""7") i (31)

where C Jn& and W) = PEF/ R, Kis the density in the cen~-
tr of a n:ucleus. :
Taking the demsity to be comstant inside a nucleus a.nf.
neglecting the diffusiveneas of a nuclear surface, we obtain
the equation :

(Wj'*lfd)gxfﬁ =0,

(32)
with the boundary condition
(F) -
_—if_” A o 0_' (321)

The solution of the Eq.(32), with the boundary comdition (32')

is
. »
(F) = £ ) (2F) =2
B 4 7 (33)

where ¥ = 4./c, is determined by (32v), ®-R =2,08.
The coefficient b is determined by the normalization condition
(Ref./7/) :

7] f or T f 28 (7 SER-PSI0)] = £ 4

(34)
and substituting S{™)(F) into Eq.(34), we ga‘b
2 g B H4n(2KR) yin e
€ éz,_r_h;g(i 2%R 2 Tk ) i L)

Using the valme of >R = 2,08, we find
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AR 2= wd
O.44-8F 5—4 = @ - L8

The regonance 1% will be discusged in the frame of the
model with factorized interaction.

Ve, o) = (E3)[ 5+ % ()] . (37)

In this cese, the main transitions are those between the com=-
ponents of & spin-orbit doublet. For simplicity we shall res-
trict ourselves to the case of a single doublet with & £illed
lower level, For the same reason, we shall discuss only the
nuclei with N = Z, where the iscscalar and isovector resonan-—
ces are not mixed.

The effective field for an isovector resonance is

s £4] &
S = §.T6 G , (38)
where

o= H{6T¢], (39)

From (39) we obtain, taking into account that Oy¢ = a- 5“3
for a sphericel nucleus, the dispertion equation for the reso-
nance fregquancy (.,

* (n=1;) ] (63)
= &’?Z E-E rar - (40)
For Rﬁ"':'{!,zj we have an exprassion
", He—= R {T o _
K] = g, Sea . (41)

a 1is determined by the normelization condition

. =) [(T°6)a]"_
v'cz.zz (?1;t’ﬁ{<*£u£3§g . | (42)

12

Tet us now estimate, using obtained expressions for Bk
and R(*), the coefficients My, and g of a collective Hamil-
tonian. The coefficients h, are equal to zero for the states
1" and 1%, so0 the expressions (26,27) become much simpler

Goe= Ref YWt f}}"’j -R{L6 v (43)
Mee = Hod 7 o Wea, 0§ (g + {419 w]], (431)

It is enough to estimate h’kl for our purpose, becuase both
expressions (43,43') have a similar structure.
Let us rewrite hkl as followa:

1, = Bfw G P TloAT0")

where u,!;"{a,l . E{f’;}“d Wea ﬂj

From the selection rules one can see that W;’*!’ﬂ} is deter-
mined by the following part of the interaction:

W[‘ra;‘}= G'{;::}/“*) [P (j‘ﬁ'—‘%ﬁ] ﬁ'f} L L AB)
Then,
i) = CLLs G /afff oL PR %)
4 m Uz
or
- ﬂt/i-f’ ' = Nica P Xy
wfts sl il (46)
where

[r= g | TLC[PISA, gty j (a7)

is the uﬂ-—diagoml matrix element of mu-rant density, corres=
ponding to the resonmance 1 . In our approximation
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j“{ﬁ; = ol ﬁ‘:” {7, Sf‘-f"é‘ij
3 :

(48)
or, substituting sﬁ“:'{i-‘) '
Lime-calxt | Llo (g, - B <JjenR )
For wi':' we have
wits 0 CLELL i of e, o, @) o) & 50)

+
In eceleulating % (ﬁ)_';"" ﬂ“? , we shall use the fact of &
slight dependence of radial wave functiions over jJ inside a
gpin=-orbit doublet, and the relation

3
= =4 + _i - ¥ "
{L-f;,,gﬂ’}h?ﬂ‘ﬁ)/i tpM> = $<L bl M T L4, LMD, (51)

Taking %M from (41) and w]{_"} from (50) and using the dis-
pertion equation (40), we find

+ jr
T fw = iﬁ’fﬁ:""“) prda <1 fixn+ 22 jb)J(_ﬁz}

Now, let us find the second term in (44). The correction
to a single~-particle field is

Wia) = 1;;, (h&xf‘lﬂ E@)= Glerste ) p((fﬁ:)

213 n (53)
.‘f
Since g{;f?:_')* _‘S‘%? , We have
wr #1171 - Clt1/9A) =~ 2 MRS OIS T
[ J;{{ ]"‘ EFEMQJ- ﬁ[(GF); -S{{"")]—-
- {.?[Iw*/‘ =) . ), =
o Erh:w dpr (OHWSE 'ﬁ")
Using (48), we obtain
I”"" ?fu]_ C('I 'f/“.w,-"fa 'E'jﬁ'if_:{f) (55)
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Comparing (55) and (46), we see that in the case of a contact
interaction the contribution to the mixing coefficient via dis-
tortion of a single~particle spectrum is only two times lesaser
then the contribution via the direct interaction of the coll-
ective states.

Now, we can eatimate the value of a mix:l.ng coefficient

h =
ﬂ‘fu-_w_’t{.T = & Oxe

With the expressions for & and b substituted into (52),
we obtain

2
ol G't.’i+/“;-7‘*.)a,{ 4 Aw. _dus z,rm)f
K=t o —a) ¥ (3 mr TWe T2H

L)) LB

(56)

where /,s is a spin-orbit splitting in & single-particle
spectrum, R is a nuclear radius, L 1s an angular momentum
of & splitted level. Taking into account L ~ A”j and &Q.,
Wy, dp;"" A ‘%_, we get a quantitative estimate

e e -
A~ (fﬁ-#}*ﬂ")‘ﬂ s

and the order of h,, is~ A-‘I-‘FE.

The value of the mixing coefficient <« is small, but
for noncollective atates ol happens to be even leasser,
For the noncollective states hkl is a matrix element of a
perturbation over the pax“bicl—az—hpla type states. This matrix
element is of the order ~ A, , therefore the ?:I.x;l.n.s of the col-
lective states is enhanced h;r a factor of~&1

The auther is aclmowledged to I.B, EKhriplowvitch, to V.V.

Mazepus, to. V.B,Telitgin and to V.G.Zelevinsky for numerous
discussions of the queations concermed in the, presented paper.
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